Skip to main content
Log in

Interactions amongHeliothis virescens larvae, cotton condensed tannin and the CryIA(c) δ-endotoxin ofBacillus thuringiensis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The potential interactions among a plant-produced allelochemical, a phytophagous insect, and an endotoxin produced byBacillus thuringiensis were investigated using purified cotton condensed tannins, the CryIA(c)δ-endotoxin fromB. thuringiensis subsp.kurstaki strain HD-73, and larvae ofHeliothis virescens. Purified condensed tannin from cotton fed to neonateH. virescens reduced feeding and mortality caused by insecticidal crystals ofB. thuringiensis. In fifth instars, tannin reduced relative growth rate (RGR), relative consumption rate (RCR), but antagonized the effects of the crystalδ-endotoxin. Tannin did not deter feeding of fifth instars in choice tests with cellulose-ester disks. Masking tannin from interacting with the dietary ingredients of artificial diets and crystal protein by encapsulation in alginate gel suggested that tannin adversely affected feeding after ingestion.These results suggest that insect control tactics that employδ-endotoxins in microbial insecticides and transgenic cotton plants may not be compatible when used in conjunction with plants containing high tannin concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang, M.J., Staver, M.J., Rocheleau, T.A., Leighton, J., Barker, R.F., andThompson, D.V. 1985. Characterized full-length and truncated plasmid clones of the crystal protein ofBacillus thuringiensis subsp.kurstaki HD-73 and their toxicity toManduca sexta.Gene 36:289–300.

    Google Scholar 

  • Barbosa, P., Krischik, V.A., andJones, C.G. (eds.) 1991. Microbial Mediation of Plant-Herbivore Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Berenbaum, M.R. 1988. Allelochemicals in insect-microbe-plant interactions: Agents provocateurs in coevolutionary arms race, pp. 97–123,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. Wiley-Interscience, New York.

    Google Scholar 

  • Bernays, E.A., Cooper-Driver, G.C., andBilgener, M. 1989. Herbivores and plant tannins—a review.Adv. Ecol. Res. 19:263–302.

    Google Scholar 

  • Chan, B.G., Waiss, A.C., Jr., andLukefahr, M. 1978. Condensed tannin: an antibiotic chemical fromGossypium hirsutum.J. Insect Physiol. 24:113–118.

    Google Scholar 

  • Felton, G.W., andDahlman, D.L. 1984. Allelochemical-induced stress: Effects ofl-canavanine on the pathogenicity ofBacillus thuringiensis inManduca sexta.J. Invert. Pathol. 44:187–191.

    Google Scholar 

  • Fischhoff, D.A., Bowdisch, K.S., Perlak, F.J., Marrone, P.O., McCormick, S.H., Nieder-Meyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G., andFraley, R.T. 1987. Insect tolerant transgenic tomato plants.Bio/Technology 5:807–813.

    Google Scholar 

  • Gill, S.S., Cowles, E.A., andPietrantonio, P.V. 1992. The mode of action ofBacillus thuringiensis endotoxins.Annu. Rev. Entomol. 37:615–636.

    Google Scholar 

  • Goodman, N.S., Gottfried, R.J., andRogoff, M.H. 1967. Biphasic system for separation of spores and crystals ofBacillus thuringiensis.J. Bacteriol. 94:485.

    Google Scholar 

  • Gould, F., Martinez-Ramirez, A., Andersen, A., Ferre, J., Silva, F., andMoar, W.J. 1992. Broad-spectrum resistance toBacillus thuringiensis toxins inHeliothis virescens.Proc. Natl. Acad. Sci. U.S.A. 89:7896–7900.

    Google Scholar 

  • Hagermann, A.E., andButler, L.G. 1978. Protein precipitation method for the quantitative determination of tannins.J. Agric. Food Chem. 26:809–812.

    Google Scholar 

  • Hedin, P.A., Jenkins, J.N., Collum, D.H., White, W.H., andParrot, W.L. 1983. Multiple factors in cotton contributing to resistance to the tobacco budworm,Heliothis virescens, pp. 347–365,in P.A. Hedin (ed.) Plant Resistance to Insects. ACS Symposium Series 208. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Hofte, H., andWhiteley, H.R. 1989. Insecticidal crystal proteins ofBacillus thuringiensis.Micro-biol. Rev. 53:242–255.

    Google Scholar 

  • Ibarra, J.E., andFederici, B.A. 1986. Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body ofBacillus thuringiensis subsp.israelensis.J. Bacteriol. 165:527–533.

    Google Scholar 

  • Klocke, J.A., andChan, B.G. 1982. Effects of cotton condensed tannin on feeding and digestion in the cotton pest,Heliothis zea.J. Insect Physiol. 28:911–915.

    Google Scholar 

  • Krischik, V.A., Barbosa, P., andReichelderfer, C.F. 1988. Three trophic level interactions: allelochemicals,Manduca sexta (L.)., andBacillus thuringiensis var.kurstaki Berliner.Environ. Entomol. 17:476–482.

    Google Scholar 

  • Lane, H.C., andSchuster, M.F. 1981. Condensed tannins of cotton leaves.Phytochemistry 20:425–427.

    Google Scholar 

  • Ludlum, C.T., Felton, G.W., andDuffey, S.S. 1991. Plant defenses: chlorogenic acid and polyphenol oxidase enhance toxicity ofBacillus thuringiensis subsp.kurstaki toHeliothis zea. J. Chem. Ecol. 17:217–237.

    Google Scholar 

  • Luthy, P., Hofmann, C., andJaquet, F. 1985. Inactivation of delta endotoxin ofBacillus thuringiensis by tannin.FEMS Microbiol. Lett. 28:3133.

    Google Scholar 

  • Morris, O.N. 1974. Inhibitory effects of foliage extracts of some forest trees on commercialBacillus thuringiensis.Can. Entomol. 104:1357–1361.

    Google Scholar 

  • Navon, A., Klein, M., andBraun, S. 1990.Bacillus thuringiensis potency bioassays againstHeliothis armigera, Earias insulana andSpodoptera littoralis larvae based on standardized diets.J. Invert. Pathol. 55:387–393.

    Google Scholar 

  • Navon, A., Federici, B.A., andWalsh, T.S. 1992. Mandibular adduction force ofHeliothis virescens (Lepidoptera: Noctuidae) larvae fed the insecticidal crystals ofBacillus thuringiensis.J. Econ. Entomol. 85: 2138–2143.

    Google Scholar 

  • Perlak, F.J., Deaton, R.W., Armstrong, T.A., Fuchs, R.L., Sims, S.R., Greenplate, J.T., andFischhoff, D.A. 1990. Insect resistant cotton plants.Bio/Technology 8:939–943.

    Google Scholar 

  • Reichelderfer, C.F. 1991. Interactions among allelochemicals, some Lepidoptera, andBacillus thuringiensis Berliner, pp.507–524,in P. Barbosa, V.A. Krischik, and C.G. Jones (eds.). Microbial Mediation of Plant-Herbivore Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • SAS Institute. 1989. SAS User's Guide: Statistics. Version 6.06 ed. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Schultz, J.C. 1989. Tannin-insect interactions, pp. 417–433,in R.W. Hemingway and J.J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.

    Google Scholar 

  • Shorey, H.H., andHale, R.I. 1965. Mass rearing of the larvae of nine noctuid species on a simple artificial medium.J. Econ. Entomol. 58:522–524.

    Google Scholar 

  • Smirnoff, W.A., andHutchinson, P.M. 1965. Bacteriostatic and bactericidal effects of extracts of foliage from various plant species onBacillus thuringiensis var.thuringiensis Berliner.J. Invert. Pathol. 7:273–280.

    Google Scholar 

  • White, W.H., Jenkins, J.N., Parrott, W.L., McCarty, J.C., Jr., Collum, D.H., andHedin, P.A. 1982. Strain and within season variability of various allelochemics within a diverse group of cottons.Crop Sci. 22:1235–1238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navon, A., Hare, J.D. & Federici, B.A. Interactions amongHeliothis virescens larvae, cotton condensed tannin and the CryIA(c) δ-endotoxin ofBacillus thuringiensis . J Chem Ecol 19, 2485–2499 (1993). https://doi.org/10.1007/BF00980685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00980685

Key words

Navigation