Skip to main content
Log in

Characteristics of specific125I-ω-conotoxin GVIA binding in rat whole brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Characteristics of specific125I-omega-conotoxin (ω-CgTX) binding were systematically investigated in crude membranes from rat whole brain. Kd and Bmax Values for the binding were 49.7 pM and 181.5 fmol/mg of protein, respectively. The effects of various types of Ca channel antagonists on the binding were investigated. Dynorphin A (1–13), in particular, specifically inhibited125I-ω-CgTX binding, but not that of [3H](+)PN200-110. Spider venom fromPlectreurys tristes did not specifically inhibit specific binding of125I-ω-CgTX, because the venom also inhibited the binding of [3H](+)PN200-110 to a similar degree. The amount of specific binding of125I-ω-CgTX was less in the cerebellum than that in any other area of whole brain. The cross-linker disuccinimidyl suberate did not label with125I-ω-CgTX and its binding sites in rat whole brain, although it did in chick whole brain, which was used as a positive control. These findings suggested that dynorphine A (1–13) was a selective blocker of ω-CgTX-sensitive Ca channels in crude membranes from rat whole brain and that ω-CgTX-sensitive Ca channels were mainly present a rat brain except cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenberg, D. A. 1987. Calcium channels and calcium channel antagonists. Ann. Neurol. 21:317–330.

    PubMed  Google Scholar 

  2. Reuter, H. 1983. Calcium channel modulation by neurotransmitters, enzymes, and drugs. Nature 301:569–574.

    PubMed  Google Scholar 

  3. Tsien, R. W. 1983. Calcium channels in excitable cell membranes. Annu. Rev. Physiol. 45:341–358.

    PubMed  Google Scholar 

  4. Nowycky, M. C., Fox, A. P., and Tsien, R. W. 1985. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443.

    PubMed  Google Scholar 

  5. Olivera, B. M., McIntosh, J. M., Cruz, L.-J., Luque, F. A., and Gray, W. R. 1984. Purification and sequence of a presynaptic peptide toxin fromConus geographus venom. Biochemistry 23:5087–5090.

    PubMed  Google Scholar 

  6. Kasai, H., Aosaki, T., and Fukuda, J. 1987. Presynaptic Caantagonist ω-conotoxin irreversibly blocks N-type Ca-channels in chick sensory neurons. Neurosci. Res. 4:228–235.

    PubMed  Google Scholar 

  7. Kerr, L. M., and Yoshikami, D. 1984. A venom peptide with a novel presynaptic blocking action. Nature 308:282–284.

    PubMed  Google Scholar 

  8. Koyano, K., Abe, T., Nishiuti, Y., and Sakakibara, S. 1987. Effects of synthetic ω-conotoxin on synaptic transmission. Eur. J. Pharmacol. 135:337–343.

    PubMed  Google Scholar 

  9. McCleskey, E. W., Fox, A. P., Feldman, D. H., Cruz, L. J., Olivera, B. M., Tsien, R. W., and Yoshikami, D. 1987. ω-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. U.S.A. 84:4327–4331.

    PubMed  Google Scholar 

  10. Oyama, Y., Tsuda, Y., Sakakibara, S., and Akaike, N. 1987. Synthetic ω-conotoxin: potent calcium channel blocking neurotoxin. Brain Res. 424:58–64.

    PubMed  Google Scholar 

  11. Enomoto, K., Sano, K., Shibuya, Y., and Maeno, T. 1986. Blockade of transmitter release by a synthetic venom peptide, ω-CgTX. Proc. Jpn Acad. Ser.B. Phys. Biol. Sci. 62:267–270.

    Google Scholar 

  12. Reynolds, I. J., Wagner, J. B., Snyder, S. H., Thayer, S. A., Olivera, B. M., and Miller, R. J. 1986. Brain voltage-sensitive calcium channel subtypes differentiated by ω-conotoxin fraction GVIA. Proc. Natl. Acad. Sci. U.S.A. 83:8804–8807.

    PubMed  Google Scholar 

  13. McCleskey, E. W., Fox, A. P., Feldman, D., and Tsien, R. W. 1986. Different types of calcium channels. J. Exp. Biol. 124:177–190.

    PubMed  Google Scholar 

  14. Cruz, L. J., and Olivera, B. M. 1986. Calcium channel antagonists: ω-conotoxin defines a new high affinity site. J. Biol. Chem. 261:6230–6233.

    PubMed  Google Scholar 

  15. Abe, T., Koyano, K., Saitsu, H., Nishiuchi, Y., and Sakakibara, S. 1986. Binding of ω-conotoxin to receptor sites associated with the voltage-sensitive calcium channel. Neurosci. Lett. 71:203–208.

    PubMed  Google Scholar 

  16. Knaus, H-G., Striessnig, J., Koza, A., and Glossmann, H. 1987. Neurotoxic aminoglycoside antibiotics are potent inhibitors of [125I]-omega-conotoxin GVIA binding to guinea-pig cerebral cortex membranes. Naunyn-Schmied. Arch Pharmacol. 336:583–586.

    Google Scholar 

  17. Feigenbaum, P., Garcia, M. L., and Kaczorowski, G. J. 1988. Evidence for distinct sites coupled to high affinity ω-conotoxin receptors in rat brain synaptic plasma membrane vesicles. Biochem. Biophys. Res. Commun. 154:298–305.

    PubMed  Google Scholar 

  18. Ichida, S., Fujisue, T., Masada, A., Oda, Y., Matsuda, N., and Aonuma, S. 1989a. Characteristics of specific bindings of nitrendine and PN200-110 to various crude membranes: Induction of irreversible bindings by UV irradiation. J. Biochem. 105:760–766.

    PubMed  Google Scholar 

  19. Ichida, S., Masada, A., Fujisue, T., Yoshioka, T., and Matsuda, N. 1989b. Photoaffinity labeling with dihydropyridine derivatives of crude membranes from rat skeletal, cardiac, ileal, and uterine muscles and whole brain. J. Biochem. 105:767–774.

    PubMed  Google Scholar 

  20. Benovic, J. L., Strasser, R. H., Caron, M. G., and Lefkowitz, R. J. 1986. β-Adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. U.S.A. 83:2797–2801.

    PubMed  Google Scholar 

  21. Nelder, J. A., and Nead, R. 1965. A simplex method for function minimization. Computer J. 7:308–313.

    Google Scholar 

  22. Barhanin, J., Schmid, A., and Lazdunski, M. 1988. Properties of structure and interaction of the receptor for ω-CgTX, a polypeptide active on Ca2+ channels. Biochem. Biophys. Res. Commun. 105:1051–1062.

    Google Scholar 

  23. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  Google Scholar 

  24. Glowinski, J., and Iversen, L. L. 1966. Regional studies of catecholamines in the rat brain-I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J. Neurochem. 13:665–669.

    Google Scholar 

  25. Gray, E. F., and Whittaker, V. P. 1962. The isolation of nerve ending from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. (Lond.) 96:79–88.

    Google Scholar 

  26. Ichida, S., Yonehara, N., Watanabe, Y., and Yoshida, H. 1980. Inhibitory effect of dibutyryl cyclic GMP on potassium-stimulated45Ca uptake by synaptosomes from rat brain. Brain Res. 192:487–494.

    PubMed  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  28. Marqueze, B., Martin-Moutot, N., Leveque, C., and Couraud, F. 1988. Characterization of the ς-conotoxin-binding molecule in rat brain synaptosomes and cultured neurons. Mol. Pharmacol. 34:87–90.

    PubMed  Google Scholar 

  29. Gross, R. A., and MacDonald, R. L. 1987. Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc. Natl. Acad. Sci. U.S.A. 84:5469–5473.

    PubMed  Google Scholar 

  30. Stevens, C. W., Weigner, M. B., and Yaksh, T. L. 1987. Intrathecal dynorphins suppress hindlimb electromyographic activity in rats. Eur. J. Pharmacol. 138:299–302.

    PubMed  Google Scholar 

  31. Walker, J. M., Moises, H. C., Coy, D. H., Baldrighi, G., and Akil, H. 1982. Nonopiate effects of dynorphin and des-Tyr-dynorphin. Science 218:1136–1138.

    PubMed  Google Scholar 

  32. Mori, Y., Friedrich, T., Kim, M-S., Mikami, A., Nakai, J., Ruth, P., Boose, E., Hofmann, F., Floxkerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K., Tanabe, T., and Numa, S. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402.

    PubMed  Google Scholar 

  33. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K. 1985. Enhancement of calcium current inAplysia neurones by phorbol ester and protein kinase C. Nature 313:313–316.

    PubMed  Google Scholar 

  34. Hartzell, H. C., and Fischmeister, R. 1986. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323:273–275.

    PubMed  Google Scholar 

  35. Levitan, I. B. 1985. Phosphorylation of ion channels. J. Memb. Biol. 87:177–190.

    Google Scholar 

  36. Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H. M., Nairn, A. C., and Greengard, P. 1986. cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Nature 323:812–814.

    PubMed  Google Scholar 

  37. Schmid, A., Renaud, J., and Lazdunski, M. 1985. Short term and long term effects of β-adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle. J. Biol. Chem. 260:13041–13046.

    PubMed  Google Scholar 

  38. Sperelakis, N. 1984. Hormonal and neurotransmitter regulation of Ca++ influx through voltage-dependent slow channels in cardiac muscle membrane. Membrane Biochem. 5:131–166.

    Google Scholar 

  39. Strong, J. A., Fox, A. P., Tsien, R. W., and Kaczmarek, L. K. 1987. Stimulation of protein kinase C recruits convert calcium channels inAplysia bag cell neurons. Nature 325:714–717.

    PubMed  Google Scholar 

  40. Holtz, G. G., Rane, S. G., and Dunlap, K. 1986. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670–672.

    PubMed  Google Scholar 

  41. Lewis, D. L., Weight, F. F., and Luini, A. 1986. A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc. Natl. Acad. Sci. U.S.A. 83:9035–9039.

    PubMed  Google Scholar 

  42. Pace, U., and Lancet, D. 1986. Olfactory GTP-binding protein: Signal-transducing polypeptide of vertebrate chemosensory neurons. Proc. Natl. Acad. Sci. U.S.A. 83:4947–4951.

    PubMed  Google Scholar 

  43. Scott, R. H., and Dolphin, A. C. 1986. Regulation of calcium currents by a GTP analogue: Potentiation of (−)-baclofen-mediated inhibition. Neurosci. Lett. 69:59–64.

    PubMed  Google Scholar 

  44. Ahlijanian, M. K., Striessnig, J., and Catterall, W. A. 1991. Phosphorylation of an α1-like subunit of an ω-conotoxin-sensitive brain calcium channel by cAMP-dependent protein kinase and protein kinase C. J. Biol. Chem. 266:20192–20197.

    PubMed  Google Scholar 

  45. Abe, T., and Saitsu, H. 1986. Photoaffinity labeling of the receptor for ω-conotoxin. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 62:416–418.

    Google Scholar 

  46. Crutz, L. J., Johnson, D. S., and Olivera, B. M. 1987. Characterization of the ω-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types. Biochemistry 26:820–824.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichida, S., Wada, T., Sekiguchi, M. et al. Characteristics of specific125I-ω-conotoxin GVIA binding in rat whole brain. Neurochem Res 18, 1137–1144 (1993). https://doi.org/10.1007/BF00978364

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00978364

Key Words

Navigation