Skip to main content
Log in

Effect of GABAmimetics on electrocorticographic spike discharges induced by guanidinoethanesulfonic acid (amidino-taurine) in the rat

  • Therapeutic Applications
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of guanidinoethanesulfonic acid (GES) on rat electrocorticograms (ECoG) and the effects of γ-aminobutyric acid (GABA) and GABA-agonists on the ECoG changes induced by GES were studied. Sporadic spike discharges began 2–5 min after 1 μmol GES/10 μl on filter paper was applied to the pia mater of the left sensorimotor cortex; spike discharges extended to the opposite cerebral hemisphere 60 min after the onset of the ipsilateral spike discharges. The spike discharges with a frequency of 5–10 spikes/min lasted until the end of the 4 hour recording. The induced spike discharges were suppressed when the original GES soaked filter paper was replaced by one containing GES (1 μmol) supplement combined with taurine (1 μmol/10 μl). GABA (1 μmol) and its receptor agonist, muscimol (10nmol) and (3R)-(−)-4-amino-3-hydroxybutyric acid (1 μmol) also suppressed the GES-induced spike discharges when applied topically. Diazepam (DZP) (10 mg/kg) suppressed the GES-induced spike discharges 10 min after i.p. injection, but phenobarbital (20 mg/kg) increased the frequency and voltage of spike discharges 100 min following subcutaneous administration. Intraperitoneal injection of either valproate (200 mg/kg) or phenytoin (25 mg/kg), after the completion of the spike discharges, showed no effect. These findings suggest that neurotransmission or neuromodulatory effects of taurine participate in GES-induced seizure activity, and that GABAA and DZP receptors may play a role in the mechanism that suppresses GES-induced seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robin, Y., and Marescau, B. 1985. Natural guanidino compounds. Pages 383–438.in Mori, A., Cohen, B.D., and Lowenthal, A. (eds.), Guanidines, Plenum Press, New York.

    Google Scholar 

  2. Yokoi, I., Edaki, A., Watanabe, Y., Shimizu, Y., Toda, H., and Mori, A. 1989. Effects of anticonvulsants on convulsive activity induced by 2-guanidinoethanol. Pages 169–181.In Mori, A., Cohen, B.D., and Koide, H. (eds.), Guanidines II Plenum Press, New York.

    Google Scholar 

  3. Mori, A., and Ohkusu, H. 1971. Isolation and identification of alpha-N-acetyl-l-arginine and its effect on convulsive seizure. Adv. Neurol. Sci. 15:303–306.

    Google Scholar 

  4. Jinnai, D., Mori, A., Mukawa, J., Ohkusu, H., Hosotani, M., Mizuno, A., and Tye, L. C. 1969. Biochemical and physiological studies on guanidino compounds induced convulsions. Jpn. J. Brain 160:3668–3673.

    Google Scholar 

  5. Jinnai, D., Sawai, A., and Mori, A. 1966. γ-Guanidinobutyric acid as a convulsive substance. Nature 212:617.

    Google Scholar 

  6. Shiraga, H., and Mori, A. 1982. Convulsive activity of α-guanidinoglutaric acid in rats. IRCS Med. Sci. 10:855–856.

    Google Scholar 

  7. Matsumoto, M., Kobayashi, K., Kishikawa, H., and Mori, A. 1976. Convulsive activity of methylguanidine in cats and rabbits. IRCS Med. Sci. 4:65.

    Google Scholar 

  8. Yokoi, I., Shimizu, Y., Ooba, S., and Mori, A. 1990. Effects of GABA-ergic drugs on spike discharges induced by methylguanidine in the rat electroencephalograms. Neurosciences 16:359–364.

    Google Scholar 

  9. Yokoi, I., Tsuruta, K., Shiraga, H., and Mori, A. 1987. δ-Guanidinovaleric acid as an endogenous and specific GABA-receptor antagonist: electroencephalographic study. Epilepsy Res. 1:114–120.

    Google Scholar 

  10. Yokoi, I., Toma, J., and Mori, A. 1984. The effect of homoarginine on the EEG of rats. Neurochem. Pathol. 2:295–300.

    Google Scholar 

  11. Mori, A., Watanabe, Y., and Akagi, M. 1982. Guanidino compound anomalies in epilepsy. Pages 347–351.in Akimoto, H., Kazamatsuri, H., Seino, M., and Ward Jr, A. A. (eds.), Advances in Epileptology, Raven Press, New York.

    Google Scholar 

  12. Mizuno, A., Mukawa, J., Kobayashi, K., and Mori, A. 1975. Convulsive activity of taurocyamine in cats and rabbits. IRCS Med. Sci. 3:385.

    Google Scholar 

  13. Mori, A., Katayama, Y., Yokoi, I., and Matsumoto, M. 1981. Inhibition of taurocyamine (guanidinotaurine)-induced seizures by taurine. Pages 41–48.in Schaffer, S. W., Baskin, S. I., and Kocsis, J.J. (eds.), The Effects of Taurine on Excitable Tissues, Spectrum Publications, New York.

    Google Scholar 

  14. Thoai, N. V., and Robin, Y. 1954. Métabolisme des dérivés guanidyles II. Isolement de la guanidinotaurine (taurocyamine) et de l'acid guanidoacétique (glycocyamine) des vers marins. Biochem. Biophys. Acta 13:533–536.

    Google Scholar 

  15. Matsumoto, M., Kishikawa, H., and Mori, A. 1976. Guanidino compounds in the sera of uremic patients and in the sera and brain of experimental uremic rabbits. Biochem. Med. 16:1–8.

    Google Scholar 

  16. Mori, A., Hosotani, M., and Tye, L. C. 1974. Studies on brain guanidino compounds by automatic liquid chromatography. Biochem. Med. 10:8–14.

    Google Scholar 

  17. Mori, A., Hiramatsu, M., Takahashi, K., and Kohsaka, M. 1975. Guanidino compounds in rat organs. Comp. Biochem. Physiol. 51:143–144.

    Google Scholar 

  18. Hiramatsu, T. 1980. Guanidino compounds in mouse brain II. Guanidino compound levels in brain relation to convulsions. Okayama Igakkai Zasshi 92:427–434.

    Google Scholar 

  19. Mori, A., Katayama, Y., Matsumoto, M., Fujiwara, M., and Hiramatsu, M. 1977. CBA mouse, an experimental model of epilepsy. Pages 450–452.in Meinardi, H., and Rowan, A. S. (eds), Advances in Epileptology, Swets and Zeitlinger BV, Amsterdam.

    Google Scholar 

  20. Hruska, R., Pajen, A., Bressler, R., and Yamamura, H. I. 1973. Taurine: Sodium-dependent, high affinity transport into rat brain synaptosomes. Molec. Pharmacol. 14:77–85.

    Google Scholar 

  21. Huxtable, R. J., Laird, H. E., and Lippincott, S. E. 1979. The transport of taurine in the heart and the rapid depletion of tissue taurine content by guanidinoethyl-sulfonate. J. Pharmacol. Exp. Ther. 211:465–471.

    Google Scholar 

  22. Huxtable, R. J., Bonhaus, D., Nakagawa, K., Laird, H. F., and Pasantes-Morales. 1985. Taurine and the action of guanidinoethane sulfonate. Pages 213–225.in Mori, A., Cohen, B. D., and Lowenthal, A. (eds), Guanidines, Plenum Press, New York.

    Google Scholar 

  23. Shindo, S., Katayama, Y., and Mori, A. 1979. Effect of guanidino compounds on glutamic pyruvic transaminase, glutamic oxaloacetic transaminase and glutamic acid decarboxylase in mouse brain. Neurosciences 5:96–97.

    Google Scholar 

  24. Matsumoto, M., Fujiwara, M., Mori, A., and Robin, Y. 1977. Effect de derives guanidques sur la cholinacetylase et sur l'acetylcholinesterase du cerveau de Lapin. C.R. Soc. Biol. 171:1226–1229.

    Google Scholar 

  25. Matsumoto, M., and Mori, A. 1976. Effects of guanidino compounds on rabbit brain microsomal Na+,K+-ATPase activity. J. Neurochem. 27:635–636.

    Google Scholar 

  26. Obata, T., Mori, A., and Yamamura, H. I. 1989. Effect of Guanidino compounds on GABA-stimulated chloride influx into membrane vesicles from rat cerebral cortex. Pages 153–157.in Mori, A., Cohen, B. D., and Koide, H. (eds), Guanidines II, Plenum Press, New York.

    Google Scholar 

  27. Watanabe, Y., Watanabe, S., Yokoi, I., and Mori, A. 1991. Effect of guanidinoethanesulfonic acid on brain monoamines in the mouse. Neurochem. Res. 16:1149–1154.

    Google Scholar 

  28. Olsen, R. W. 1981. GABA-benzodiazepine-barbiturate receptor interaction. J Neurochem. 37:1–13.

    Google Scholar 

  29. Hayashi, T. 1959. Neurophysiology and Neurochemistry of Convulsion, Dainihon-Tosho, Tokyo.

    Google Scholar 

  30. Snodgrass, S. R. 1978. Use of3H-muscimol for GABA receptor studies. Nature 273:392–394.

    Google Scholar 

  31. Weinberger, J., Nichlas, W. J., and Berl, S. 1976. Mechanism of action of anticonvulsant. Neurology 29:437–438.

    Google Scholar 

  32. Simler, S., Ciesielski, L., Maitre, M., Randrianarisoa, H., and Mandel, P. 1973. Effect of sodium n-propylacetate on audiogenic seizures and brain γ-aminobutyric acid level. Biochem. Pharmacol. 22:1701–1708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoi, I., Kabuto, H. & Mori, A. Effect of GABAmimetics on electrocorticographic spike discharges induced by guanidinoethanesulfonic acid (amidino-taurine) in the rat. Neurochem Res 18, 533–538 (1993). https://doi.org/10.1007/BF00967258

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967258

Key Words

Navigation