Skip to main content
Log in

Molecular aspects of glutamate receptors and sodium-calcium exchange carriers in mammalian brain: Implications for neuronal development and degeneration

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

N-Methyl-d-aspartate (NMDA) andl-glutamate activate membrane receptor that produce substantial permeation of Na+, K+ and Ca2+ through the neuronal membrane. These ionic fluxes are intimately linked to processes that regulate neuronal survival, growth and differentiation. Intracellular free Ca2+ concentrations are thought to be particularly important determinants of the vulnerability of neurons to excessive excitatory stimulation produced through activation of NMDA receptors. In order to understand the molecular events involved in both NMDA receptor activation and regulation of intracellular Ca2+ levels, we have purified and reconstituted the protein complexes that form the NMDA/glutamate receptors in rat brain synaptic membranes and those that constitute the Na+-Ca2+ antiporters in bovine brain synaptic membranes. The molecular properties of these protein complexes are described, and information from the most recent studies of exploration of the molecular structures of these receptors and transport carriers is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cotman, C. W., and Monaghan, D. T. 1988. Excitatory amino acid neurotransmission, NMDA receptors and Hebb-type synaptic plasticity. Ann. Rev. Neurosci. 11:61–80.

    Google Scholar 

  2. Watkins, J. C., Krogsgaard-Larsen, P., and Honoré, T. 1990. Structure-activity relationships in the development of excitatory amino acid receptor agonists and some competitive antagonists. Trends Pharmacol. Sci. 11:25–33.

    Google Scholar 

  3. Balazs, R., Hack, N., and Jorgensen, O. S. 1988. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci. Lett. 87:80–86.

    Google Scholar 

  4. Brewer, G. J., and Cotman, C. W. 1989. NMDA receptor regulator of neuronal morphology in cultured hippocampal neurons. Neurosci. Lett. 99:268–273.

    Google Scholar 

  5. Mattson, M. P., Dou, P., and Kater, S. B. 1988. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8:2087–2100.

    Google Scholar 

  6. Collingridge, G. J. 1985. Long-term potentiation in the hippocampus; mechanisms of initiation and modulation by neurotransmitters. Trends Pharmacol. Sci. 6:407–411.

    Google Scholar 

  7. Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776.

    Google Scholar 

  8. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852.

    Google Scholar 

  9. Wieloch, T. 1985. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate receptor antagonist. Science 230:681–683.

    Google Scholar 

  10. Chapman, A. G., Meldrum, B. S., Nanji, N., and Watkins, J. C. 1987. Anticonvulsant action and biochemical effects in DBA 2 mice of CPP (3-(±)-2-(carboxypiperazin-4-yl)-1-propyl-1-phosphonate), a novel N-methyl-D-aspartate antagonist, Eur. J. Pharmacol. 149:91–96.

    Google Scholar 

  11. Gean, P.-W., and Shinnick-Gallagher, P., 1988. Eliptiform activity induced by magnesium-free solution in slices of rat amygdala: antagonism by N-methyl-D-aspartate receptor antagonists. Neurophyarmacol. 27:557–562.

    Google Scholar 

  12. Choi, D. W., 1987. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7:369–379.

    Google Scholar 

  13. Mattson, M. P., Guthrie, P. B., and Kater, S. B. 1989. A role for Na+-dependent Ca2+ extrusion in protection against neuronal excitotoxicity. FASEB J. 3:2519–2526.

    Google Scholar 

  14. Siesjö, B. K., and Bengtsson, F., 1989. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and preading depression: A unifying hypothesis. J. Cereb. Blood Flow Metab. 9:127–140.

    Google Scholar 

  15. Michaelis, E. K., Michaelis, M. L., Stormann, T. M., Chittenden, W. L., and Grubbs, R. D. 1983. Purification and molecular characterization of the brain synaptic membrane glutamate-binding protein. J. Neurochem. 40:1742–1753.

    Google Scholar 

  16. Michaelis, E. K., Chittenden, W. L., Johnson, B. E., Galton, N., and Decedue, C. 1984. Purification, biochemical characterization, binding activity, and selectivity of a glutamate binding protein from bovine brain. J. Neurochem. 42:397–406.

    Google Scholar 

  17. Chen, J-W., Cunningham, M., Galton, N., and Michaelis, E. 1988. Immune labeling and purification of a 71 kDa glutamate-binding protein from brain synaptic membranes. J. Biol. Chem. 263:417–426.

    Google Scholar 

  18. Eaton, M. J., Chen, J-W., Kumar, K. N., Cong, Y., and Michaelis, E. K. 1990. Immunochemical characterization of brain synaptic membrane glutamate-binding proteins. J. Biol. Chem. 265:16195–16204.

    Google Scholar 

  19. Cunningham, M. D., and Michaelis, E. K. 1990. Solubilization and partial purification of 3-((±)-2-carboxypiperazine-4-yl)-[1,2-3H]propyl-1-phosphonic acid recognition proteins from rat brain synaptic membranes. J. Biol. Chem. 265:7768–7778.

    Google Scholar 

  20. Ly, A. M., and Michaelis, E. K. 1991. Solubilization, partial purification and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes. Biochemistry 30:4307–4316.

    Google Scholar 

  21. M. Uto, E. K. Michaelis, I.-F. Hu, Y. Umezawa and T. Kuwana. 1990. Biosensor development with a glutamate receptor ion-channel reconstituted in a lipid bilayer. Anal. Sci., 6:221–225.

    Google Scholar 

  22. Ikin, A. F., Kloog, Y., and Sokolovsky, M. 1990. N-Methyl-D-aspartate phencyclidine receptor complex of rat forebrain—purification and biochemical characterization. Biochemistry 29:2290–2295.

    Google Scholar 

  23. Blaustein, M. P. 1988. Calcium and synaptic functions. Pages 275–304,in Baker, P. F. (ed.), Calcium in Drug Action, Spinger-Verlag, Berlin.

    Google Scholar 

  24. Sloviter, R. S. 1989. Calcium-binding protein (Calbindin-D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J. Comp. Neurol. 280:183–196.

    Google Scholar 

  25. Munoz, D. G. 1990. The distribution of chromogranin A-like immunoreactivity in the human hippocampus coincides with the pattern of resistance to epilepsy-induced neuronal damage. Ann. Neurol. 27:266–275.

    Google Scholar 

  26. Michaelis, M. L., and Michaelis, E. K. 1981. Ca++ fluxes in resealed synaptic plasma membrane vesicles. Life Sci. 28:37–45.

    Google Scholar 

  27. Michaelis, M. L., Michaelis, E. K. 1983. Alcohol and local anesthetic effects on Na+-dependent Ca2+ fluxes in brain synaptic membrane vesicles. Biochem. Pharmacol. 32:963–969.

    Google Scholar 

  28. Hoel, G., Michaelis, M. L., Freed, W. J., and Kleinman, J. E. 1990. Characterization of Na+−Ca2+ exchange activity in plasma membrane vesicles from postmortem human brain. Neurochem. Res. 15:881–887.

    Google Scholar 

  29. Barzilai, A., Spanier, R., and Rahamimoff, H. 1984. Isolation, purification and reconstitution of the Na+ gradient-dependent Ca2+ transporter (Na+−Ca2+ exchanger) from brain synaptic plasma membranes. Proc. Natl. Acad. Sci. USA 81:6521–6525.

    Google Scholar 

  30. Soldati, L., Longoni, S., and Carafoli, E. 1985. Solubilization and reconstitution of the Na+/Ca2+ exchanger of cardiac sarcolemma: Properties of the reconstituted system and tentative identification of the protein(s) responsible for the exchanges activity. J. Biol. Chem. 260:13321–13327.

    Google Scholar 

  31. Michaelis, M. L., Nunley, E. W., and Michaelis, E. K. 1986. Solubilization and partial purification of the Na+−Ca2+ exchanger from brain synaptic membranes. Soc. Neurosci. Abst. 12:162.

    Google Scholar 

  32. Philipson, K. D., Longoni, S., and Ward, R. 1988. Purification of the cardiac Na+−Ca2+ exchange protein. Biochim. Biophys. Acta 945:298–306.

    Google Scholar 

  33. Cook, N. J., and Kaupp, U. B. 1988. Solubilization, purification and reconstitution of the sodium-calcium exchanger from bovine retinal rod outer segments. J. Biol Chem. 263:417–426.

    Google Scholar 

  34. Michaelis, M. L., Jayawickreme, C. K., and Joachims, B. 1989. Chromatographic procedures in the isolation of the Na+−Ca2+ antiporter from brain synaptic membranes. J. Cell Biol. 107:127a.

    Google Scholar 

  35. Nicoll, D. A., and Applebury, M. L. 1989. Purification of the bovine rod outer segment Na+−Ca2+ exchanger. J. Biol. Chem. 264:16207–16213.

    Google Scholar 

  36. Nicoll, D. A., Longoni, S., and Philipson, K. D. 1990. Molecular cloning and functional expression of the cardiac sarcolemmal Na+−Ca2+ exchanger. Science 250:562–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Frederick E. Samson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, E.K., Michaelis, M.L. Molecular aspects of glutamate receptors and sodium-calcium exchange carriers in mammalian brain: Implications for neuronal development and degeneration. Neurochem Res 17, 29–34 (1992). https://doi.org/10.1007/BF00966862

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966862

Key Words

Navigation