Skip to main content
Log in

Determination of regional distributions of phenylethylamine andmeta-andpara-tyramine in rat brain regions and presence in human and dog plasma by an ultra-sensitive negative chemical ion gas chromatography-mass spectrometric (NCI-GC-MS) method

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Using a new ultrasensitive method the trace biogenic amines, phenylethylamine,meta-tyramine andpara-tyramine have been quantitated in brain regions obtained from a single rat. Phenylethylamine concentrations in ng/g wet tissue (mean±std. error) were as follows: caudate 2.71±0.73, hypothalamus 0.45±0.15, cerebellum 0.09±0.02, olfactory bulb 0.35±0.11, stem 0.13±0.03, hippocampus 0.20±0.11, cortex 0.69±0.13 and the rest (remainder of the brain) 2.81±0.41. Mean whole brain was 1.23±0.19 ng/g, in agreement with previous measurements.meta-Tyramine concentrations (ng/g) were: caudate 2.69±0.19, hypothalamus 0.32±0.16, cerebellum 0.07±0.04, olfactory bulb 0.09±0.04, stem 0.04±0.01, hippocampus, 0.07±0.02, cortex 0.18±0.15 and the rest 0.15±0.06, with a mean whole brain value of 0.26±0.05 ng/g andpara-tyramine concentrations were: caudate 8.99±1.60, hypothalamus 0.93±0.13, cerebellum 0.78±0.27, olfactory bulb 0.70±0.13, stem 0.90±0.36, hippocampus 0.40±0.06, cortex 1.78±0.28 and the rest 2.38±0.12 and mean whole brain was 1.90±0.25 ng/g. In human plasma the concentrations of the three amines were found to be 31.3±3.4 pg/ml, 5.3±1.6 pg/ml and 66.0±9.9 pg/ml respectively and in dog blood 95.3±4.6 pg/ml, 24.0±7.6 pg/ml and 486±43 pg/ml respectively. When monoamine oxidase inhibitors were added to the blood immediately after collection there were no significant increases in the amine levels indicating that MAO-B is not present in plasma in significant quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durden, D. A., Philips, S. R., and Boulton, A. A. 1973. Identification and distribution of β-phenylethylamine in the rat. Can. J. Biochem. 51:995–1002.

    PubMed  Google Scholar 

  2. Willner, J., LeFevre, H. F., and Costa, E. 1974. Assay by multiple ion detection of phenylethylamine and phenylethanolamine in rat brain. J. Neurochem. 23:857–859.

    PubMed  Google Scholar 

  3. Saavedra, J. M. 1974. Enzymatic isotopic assay for and presence of β-phenylethylamine in brain. J. Neurochem. 22:211–216.

    PubMed  Google Scholar 

  4. Philips, S. R., Rozdilski, B., and Boulton, A. A. 1978. Evidence for the presence ofm-tyramine,p-tyramine, trytamine and phenylethylamine in the rat brain and several areas of the human brain. Biol. Psychiatry 13:51–57.

    PubMed  Google Scholar 

  5. Karoum, F., Nasrallah, H., Potkin, S., Chuang, L., Moyer-Schwing, J., Phillips, I., and Wyatt, R. J. 1979. Mass fragmentography of phenylethylamine,m-andp-tyramine and related amines in plasma, cerebrospinal fluid, urine and brain. J. Neurochem. 33:201–212.

    PubMed  Google Scholar 

  6. Reynolds, G. P., Sandler, M., Hardy, J., and Bradford, H. 1980. The determination and distribution of 2-phenylethylamine in sheep brain. J. Neurochem. 34:1123–1125.

    PubMed  Google Scholar 

  7. Szymanski, H. V., Naylor, E. W., and Karoum, F. 1987. Plasma phenylethylamine and phenylalanine in chronic schizophrenic patients. Biol. Psychiatry 22:194–198.

    PubMed  Google Scholar 

  8. Durden, D. A., Davis, B. A., and Boulton,A. A. 1991. Quantification of plasma phenylethylamine by electron capture negative ion gas chromatography-mass spectrometry of the N-acetyl-N-pentafluorobenzoyl derivative. Biol. Mass Spectrom. 20:375–381.

    PubMed  Google Scholar 

  9. Davis, B. A., O'Reilly, R. L., Placatka, C. L., Paterson, I. A., Yu. P. H., and Durden, D. A. 1991. Effect of dietary phenylalanine on the plasma concentrations of phenylalanine, phenylethylamine and phenylacetic acid in healthy volunteers. Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 15:611–623.

    Google Scholar 

  10. O'Reilly, R., Davis, B. A., Durden, D. A., Thorpe, L., Machnee, H., and Boulton, A. A. 1991. Plasma phenylethylamine in schizophrenic patients. Biol. Psychiatry 30:145–150.

    PubMed  Google Scholar 

  11. Yang, H.-Y. T., and Neff, N. H. 1973. β-Phenylethylamine: A specific substrate for type B monoamine oxidase of brain. J. Pharmacol. Exp. Therap. 187:365–371.

    Google Scholar 

  12. Philips, S. R., and Boulton, A. A. 1979. The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum. J. Neurochem. 33:159–167.

    PubMed  Google Scholar 

  13. Yu, P. H. 1986. Monoamine oxidase. Pages 235–277.in Boulton, A. A., G. B. Baker and P. H. Yu (eds.) Vol. 5. Neuromethods: Neurotransmitter Enzymes, Humana Press Inc., New Jersey.

    Google Scholar 

  14. Wu, P. H., and Boulton, A. A. 1975. Metabolism, distribution and disappearance of injected β-phenylethylamine in the rat. Can. J. Biochem. 53:42–50.

    PubMed  Google Scholar 

  15. Durden, D. A., and Philips, S. R. 1980. Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem. 34:1725–1732.

    PubMed  Google Scholar 

  16. Durden, D. A., Nguyen, T.-V., and Boulton, A. A. 1988. Kinetics of intraventricularly injected trace amines and their deuterated isotopomers. Neurochem. Res. 13:943–950.

    PubMed  Google Scholar 

  17. Boulton, A. A., Dyck, L. E., and Durden, D. A. 1974. Hydroxylation of β-phenylethylamine in the rat. Life Sci. 15:1673–1683.

    PubMed  Google Scholar 

  18. Molinoff, P. B., Landsberg, L., and Axelrod, J. 1969. An enzymatic assay for octopamine and other β-hydroxylated phenylethylamines. J. Pharmacol. Exp. Therap. 170:253–261.

    Google Scholar 

  19. Boulton, A. A. 1976. Cerebral aryl alkyl aminergic mechanisms. Pages 21–39.in Usdin, E. and M. Sandler (eds.). Trace Amines and the Brain, Marcel Dekker, Inc., New York.

    Google Scholar 

  20. Boulton, A. A. 1980. The properties and potential function of some brain trace amines. Pages 291–303.in Battistin, L., G. A., Hashim and A. Lajtha (eds.), Vol. 39. Progress in Clinical Biological Research, Neurochemistry and Clinical Neurology, Alan R. Liss, Inc., New York.

    Google Scholar 

  21. Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system. J. Neurochem. 55:1827–1837.

    PubMed  Google Scholar 

  22. Jones, R. S. G., and Boulton, A. A. 1980. Interactions betweenp-tyramine,m-tyramine, or β-phenylethylamine and dopamine on single neurons in the cortex and caudate nucleus of the rat. Can. J. Physiol. Pharmacol. 58:222–227.

    PubMed  Google Scholar 

  23. Paterson, I. A. 1988. An interaction between β-phenylethylamine and noradrenaline: An iontophoretic study in the rat cerebral cortex. Pages 201–212.in Boulton, A. A., A. V. Juorio and R. G. H. Downer (eds.) Trace Amines. Comparative and Clinical Neurobiology, Humana Press, New Jersey.

    Google Scholar 

  24. Paterson, I. A. 1988. The potentiation of cortical neurone responses to noradrenaline by β-phenylethylamine: effects of lesions of the locus coeruleus. Neuroscience Lett. 87:139–144.

    Google Scholar 

  25. Paterson, I. A., and Boulton, A. A. 1988. β-Phenylethylamine enhances single cortical neurone responses to noradrenaline in the rat. Brain Res. Bull. 20:173–177.

    PubMed  Google Scholar 

  26. Raiteri, M., Del Carmine, R., Bertolline, A., and Levi, G. 1977. Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur. J. Pharmacol. 41:133–143.

    PubMed  Google Scholar 

  27. Dyck, L. E. 1983. Release of monoamines from striatal slices by phenelzine and β-phenylethylamine. Progr. Neuro-Psychopharmacol. Biol. Psychiat. 7:797–800.

    Google Scholar 

  28. Philips, S. R., and Robson, A. M. 1983. In vivo release of endogenous dopamine from rat caudate nucleus by phenylethylamine. Neuropharmacology 22:1297–1301.

    PubMed  Google Scholar 

  29. Philips, S. R. 1986. In vivo release of endogenous dopamine from rat caudate nucleus by β-phenylethylamine and α, α-dideutero-β-phenylethylamine. Life Sci. 39:2395–2400.

    PubMed  Google Scholar 

  30. Coulson, W. F., Henson, G., and Jepson, D. 1968. The production ofm-tyramine from L-phenylalanine by rat-liver preparations. Biochim. Biophys. Acta 156:135–139.

    PubMed  Google Scholar 

  31. Lovenberg, W., Weissbach, H., and Udenfriend, S. 1962. Aromatic L-amino acid decarboxylase. J. Biol. Chem. 237:89–93.

    PubMed  Google Scholar 

  32. Sandler, M., Karoum, F., Ruthven, C. J. R., and Calne, D. B. 1969. m-Hydroxyphenylacetic acid formation from L-Dopa in man: suppression by neomycin. Science 166:1417–1418.

    PubMed  Google Scholar 

  33. Boulton, A. A. and Dyck, L. E. 1974. Biosynthesis and excretion ofmeta- andpara-tyramine in the rat. Life Sci. 14:2497–2506.

    PubMed  Google Scholar 

  34. Dyck, L. E. 1989. Release of some endogenous trace amines from rat striatal slices in the presence and absence of a monoamine oxidase inhibitor. Life Sci. 44:1149–1156.

    PubMed  Google Scholar 

  35. Philips, S. R., Davis, B. A., Durden, D. A., and Boulton, A. A. 1975. Identification and distribution ofm-tyramine in the rat. Can. J. Biochem. 53:65–69.

    PubMed  Google Scholar 

  36. Philips, S. R. 1984. Analysis of trace amines: endogenous levels and the effects of various drugs on tissue concentrations in the rat. Pages 127–143.in Boulton, A. A., G. B. Baker, W. G. Dewhurst and M. Sandler (eds.) Neurobiology of the Trace Amines, Humana Press, New York.

    Google Scholar 

  37. Philips, S. R., Baker, G. B., and McKim, H. R. 1980. Effects of tranylcypramine on the concentrations of some trace amines in the diencephalon and hippocampus of the rat. Experientia 36:241–242.

    PubMed  Google Scholar 

  38. Gunne, L.-M., and Jonsson, J. 1965. On the occurrence of tyramine in the rabbit brain. Acta Physiol. Scand. 64:434–438.

    PubMed  Google Scholar 

  39. Boulton, A. A., and Wu, P. H. 1973. Biosynthesis of cerebral phenolic amines II. In vivo regional formation ofp-tyramine and octopamine from tyrosine and dopamine. Can. J. Biochem. 51:428–435.

    PubMed  Google Scholar 

  40. Boulton, A. A., and Quan, L. 1970. Formation ofp-tyramine from DOPA and dopamine in rat brain. Can. J. Biochem. 48:1287–1291.

    PubMed  Google Scholar 

  41. Wu, P. H., and Boulton, A. A. 1974. Distribution, metabolism and disappearance of intraventricularly injectedp-tyramine in the rat. Can. J. Biochem. 52:374–381.

    PubMed  Google Scholar 

  42. Philips, S. R., Durden, D. A., and Boulton, A. A. 1974. Identification and distribution ofp-tyramine in the rat. Can. J. Biochem. 52:366–373.

    PubMed  Google Scholar 

  43. Edwards, D. J., Doshi, P. S. and Hanin, I. 1979. Analysis of phenylethylamines by gas chromatography-chemical ionization mass spectrometry. Anal. Biochem. 96:308–316.

    PubMed  Google Scholar 

  44. Duffield, P. H., Dougan, D. F. H., Wade, D. N., and Duffield, A. M. 1981. A chemical ionization gas chromatographic mass spectrometric assay for octopamine and tyramine in rat brain. Biomed. Mass Spectrom. 8:170–173.

    PubMed  Google Scholar 

  45. Lauber, J., and Waldmeier, P. C. 1984. Determination of 2-phenylethylamine in rat brain after MAO inhibitors, and in human CSF and urine by capillary GC and chemical ionization MS. J. Neural Transm. 60:247–264.

    PubMed  Google Scholar 

  46. Duffield, P. H., Dougan, D. F. H., Wade, D. H., Low, G. K. C., and Duffield, A. M. 1983. A negative ion chemical ionization GCMS assay for octopamine, tyramine and their α-methylated analogs in regions of rat brain after administration of amphetamine. Spectros. Int. J. 2:311–317.

    Google Scholar 

  47. Durden, D. A. 1991. An evaluation of the negative ion mass spectra of the electron capturing derivatives of the biogenic trace amines I: Phenylethylamine. Biol. Mass Spectrom. 20:367–374.

    Google Scholar 

  48. Versteeg, D. H. G., Van der Gugten, J., De Jong, W., and Palkovits, M. 1976. Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res. 113:563–574.

    PubMed  Google Scholar 

  49. Yonekura, T., Kamata, S., Wasa, M., Okada, A., Yamatodani, A., Watanabe, T., and Wada, H. 1988. Simultaneous determination of plasma phenylethylamine, phenylethanolamine, tyramine and octopamine by high-performance liquid chromatography using derivatization with fluorescamine. J. Chromatogr. Biomed. Appl. 427:320–325.

    Google Scholar 

  50. Neff, N. H., and Yang, H.-Y. T. 1974. Another look at the monoamine oxidase inhibitor drugs. Life Sci. 14:2061–2074.

    PubMed  Google Scholar 

  51. Dewar, K. M. 1986. Thesis: A study of the behavioural and neurochemical effects of deuterium substitution in DL-DOPA, dopamine and phenylethylhydrazine. University of Saskatchewan.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durden, D.A., Davis, B.A. Determination of regional distributions of phenylethylamine andmeta-andpara-tyramine in rat brain regions and presence in human and dog plasma by an ultra-sensitive negative chemical ion gas chromatography-mass spectrometric (NCI-GC-MS) method. Neurochem Res 18, 995–1002 (1993). https://doi.org/10.1007/BF00966759

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966759

Key Words

Navigation