Skip to main content
Log in

Chronic lesion of corticostriatal fibers reduces GABAB but not GABAA binding in rat caudate putamen: An autoradiographic study

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Mugnaini, E., and Oertel, W. H. 1985. An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry Pages 436–622in A. Björklund and T. Hökfelt, (eds.), Publ. Elsevier Science Publishers, B. V.Handbook of Chemical Neuroanatomy Vol. 4: GABA and neüropeptides in the CNS. Part 1

  2. Hill, D. R., and Bowery, N. G. 1981.3H-baclofen and3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature, 290:149–152.

    PubMed  Google Scholar 

  3. Bowery, N. G. 1989. GABAB receptors and their significance in mammalian pharmacology. Trends in Pharmac. Sci., 10:401–407.

    Google Scholar 

  4. Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes, Trends in Neuroscience, 11:112–116.

    Google Scholar 

  5. Bormann, J., Hamill, O. P., Sakmann, B. 1987. Mechanism of anion permeation through channels gated by glycine and gamma aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.), 385:243–286.

    Google Scholar 

  6. Newberry, N. R. and Nicoll, R. A. 1984. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature, 308:450–452.

    PubMed  Google Scholar 

  7. Newberry, N. R. and Nicoll, R. A. 1985. Comparison of the action of baclofen γ-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J. Physiol. 360:161–185.

    PubMed  Google Scholar 

  8. Gähwiler, B. H. and Brown, D. A. 1985. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci., USA., 82:1558–1562.

    Google Scholar 

  9. Inoue, M., Matsuo, T. and Ogata, N. 1985a. Baclofen activates voltage-dependent and 4-aminopyridine sensitive K+ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro. Br. J. Pharmacol., 84:833–841.

    PubMed  Google Scholar 

  10. Inoue, M., Matsuo, T. and Ogata, N. 1985b. Characterization of pre- and postsynaptic actions of (-)baclofen in the guinea-pig hippocampus in vitro. Br. J. Pharmacol., 84:843–851.

    PubMed  Google Scholar 

  11. Desarmenien, M., Feltz, P., Occhipinti, G., Santangelo, F. and Schlichter, R. 1984. Co-existence of GABAA and GABAB receptors on Aδ and C primary afferents. Br. J. Pharmac., 81:327–333.

    Google Scholar 

  12. Dunlap, K. 1981. Two types of γ-aminobutyric acid receptor on embryonic sensory neurones. Br. J. Pharmac., 74:579–585.

    Google Scholar 

  13. Deisz, R. A. and Lux, H. D. 1985. γ-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons. Neurosci. Lett., 56:205–210.

    PubMed  Google Scholar 

  14. Dolphin, A. C. 1987. Nucleotide binding proteins in signal transduction and disease. Trends in Neuroscience, 10:53–57.

    Google Scholar 

  15. Dolphin, A. C. and Scott, R. H. 1987. Calcium channel currents and their inhibition by (-)baclofen in rat sensory neurones: Modulation by guanine nucleotides. J. Physiol. (Lond.), 386:1–17.

    Google Scholar 

  16. Holz, G. G., Rane, S. G. and Dunlap, K. 1986. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature, 319:670–672.

    PubMed  Google Scholar 

  17. Andrade, R., Malenka, R. C. and Nicoll, R. A. 1986. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science, 234:1261–1265.

    PubMed  Google Scholar 

  18. Asano, T., Ui, M. and Ogasawara, N. 1985. Prevention of the agonist binding to γ-aminobutyric acid B receptors by guanine nucleotides and islet-activating protein, pertussis toxin, in bovine cerebral cortex. J. Biol. Chem., 260:12653–12658.

    PubMed  Google Scholar 

  19. Hill, D. R. 1985. GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br. J. Pharmacol. 84:249–257.

    PubMed  Google Scholar 

  20. Innis, R. B., Nestler, E. J. and Aghajanian, G. K. 1988. Evidence for G protein mediation of serotonin-and GABAB induced hyperpolarization of rat dorsal raphe neurons. Brain Res., 459:27–36.

    PubMed  Google Scholar 

  21. Karbon, E. W. and Enna, S. J. 1985. Characterization of the relationship between γ-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol., 27:53–59.

    PubMed  Google Scholar 

  22. Thalmann, R. H. 1988. Evidence that guanosine triphosphate (GTP) binding proteins control a synaptic response in brain. effect of pertussis toxin and GTPγS on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neuroscience, 8:4589–4602.

    Google Scholar 

  23. Wojcik, W. J., and Neff, N. H. 1984. γ-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol. Pharmac., 25:24–28.

    Google Scholar 

  24. Xu, J. and Wojcik, W. J. 1986. Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: blockade by islet-activating protein. J. Pharmac. Exp. Ther., 239:568–573.

    Google Scholar 

  25. Wilkin, G. P., Hudson, A. L. Hill, D. R. and Bowery, N. G. 1981. Autoradiographic localization of GABAB receptors in rat cerebellum. Nature, 294:584–587.

    PubMed  Google Scholar 

  26. Price, G. W., Kelly, J. S. and Bowery, N. G. 1987. The location of GABAB receptor binding sites in mammalian spinal cord. Synapse, 1:530–538.

    PubMed  Google Scholar 

  27. Bowery, N.G., Hudson, A. L., and Price, G. W. 1987. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience, 20:365–383.

    PubMed  Google Scholar 

  28. Chu, D. C. M., Albin, R. L., Young, A. B., and Penney, J. B. 1990. Distribution of kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience, 34:341–357.

    PubMed  Google Scholar 

  29. Barber, R.P., Vaughn, J. E., Saito, K., McLaughlin, B. J. and Roberts, E. 1978. GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res, 141:35–55.

    PubMed  Google Scholar 

  30. Curtis, D. R. 1978. Pre- and non-synaptic activities of GABA and related amino acids in the mammalian nervous system. In:Amino Acids As Chemical Transmitters (Ed. F. Fonnum, Publ. Plenum Press, New York) pp. 55–86.

    Google Scholar 

  31. Bowery, N. G., Doble, A., Hill, D. R., Hudson, A. L., Shaw, J. S., Turnbull, M. J. and Warrington, R. 1981. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol., 71:53–70.

    PubMed  Google Scholar 

  32. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. J. 1980. Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283:92–94.

    PubMed  Google Scholar 

  33. Lanthorn, T. H. and Cotman, C. W. 1981. Baclofen selectively inhibits excitatory synaptic transmission in the hippocampus. Brain Res. 225:171–178.

    PubMed  Google Scholar 

  34. Ault, B., and Nadler, J. V. 1982. Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice. J. Pharm. Exp. Ther., 223:291–297.

    Google Scholar 

  35. Olpe, H-R., Baudry, M., Fagni, L. and Lynch, G. 1982. The blocking action of baclofen on excitatory transmission in the rat hippocampal slice. J. Neurosci., 2:698–703.

    PubMed  Google Scholar 

  36. Kato, K., Goto, M. and Fukuda, H. 1982. Baclofen: Inhibition of the release of L-[3H]glutamate and L-[3H]aspartate from rat whole brain synaptosomes. Gen. Pharmacol., 13:445–447.

    PubMed  Google Scholar 

  37. Collins, G. G. S., Anson, J., and Kelly, E. P. 1982. Baclofen: Effects on evoked field potentials and amino acid transmitter release in the rat olfactory cortex. Brain Res., 238:371–383.

    PubMed  Google Scholar 

  38. Collins, G. G. S. and Howlett, S. J. 1988. The pharmacology of excitatory transmission in the rat olfactory cortex slice. Neuropharmacology, 27:697–705.

    PubMed  Google Scholar 

  39. Burke, S. P. and Nadler, J. V. 1988. Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: Effects of adenosine and baclofen. J. Neurochem., 51:1541–1551.

    PubMed  Google Scholar 

  40. Dutar, P. and Nicoll, R. A. 1988a. Pre- and post-synaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron, 1:585–598.

    PubMed  Google Scholar 

  41. Harrison, N. L. 1990. On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J. Physiol., 422:433–446.

    PubMed  Google Scholar 

  42. Pittaluga, A., Asaro, D., Pellegrini, G. and Raiteri, M. 1987. Studies on3H-GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Eur. J. Pharmacol., 144:45–52.

    PubMed  Google Scholar 

  43. Harrison, N. L., Lange, G. D. and Barker, J. L. 1988. (-)Baclofen activates presynaptic GABAB receptors on GABAergic inhibitory neurons from embryonic rat hippocampus. Neurosci. Leters, 85:105–109.

    Google Scholar 

  44. Waldmeier, P. C., Wicki, P., Feldtauer, J. J., and Baumann, P. A. 1988. Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Naunyn-Schmiedeberg's Arch. Pharmacol., 237:289–295.

    Google Scholar 

  45. Potashner, S. J. 1979. Baclofen: Effects on amino release and metabolism in slices of the guinea-pig cerebral cortex. J. Neurochem. 32:103–109.

    PubMed  Google Scholar 

  46. Kilpatrick, G. J., Muhyaddin, M. S., Roberts, P. J. and Woodruff, G. N. 1983. GABAB binding sites on rat striatal synptic membranes. Br. J. Pharmacol., 78: suppl., 6P.

  47. Reimann, W., Zum, D. and Starke, K. 1982. γ-Aminobutyric acid can both inhibit and facilitate dopamine release in the caudate nucleus of the rabbit. J. Neurochem., 39:961–969.

    PubMed  Google Scholar 

  48. Moratalla, R., Barth, T. and Bowery, N. G. 1989. Benzodiazepine receptor autoradiography in corpus striatum of rat after large frontal cortex lesions and chronic treatment with diazepam. Neuropharmacology, 28:893–900.

    PubMed  Google Scholar 

  49. Flamm, E. S., Demopoulos, H. B., Seligman, M. L., Tomasula, J. J., DeCrescito, V. and Ransohoff, J. 1977. Ethanol potentiation of central nervous system trauma. J. Neurosurg., 46:328–335.

    PubMed  Google Scholar 

  50. Unnerstall, J. R., Niehoff, D. L., Kuhar, M. J. and Palacios, J. M. 1982. Quantitative receptor autoradiography using tritiated Ultrofilm: application to multiple benzodiazepine receptors. J. Neuroscience Methods, 6:59–73.

    Google Scholar 

  51. Stephenson, G. A. 1988. Understanding the GABAA receptor: a chemically gated ion channel. Biochem. J., 249:21–32.

    PubMed  Google Scholar 

  52. Olsen, R. W. and Tobin, A. J. 1990. Molecular biology of GABAA receptors. FASEB J., 4:1469–1480.

    PubMed  Google Scholar 

  53. Gobbi, M. & Mennini, T. (personal communication).

  54. Grimm, V. E. and Hershkowitz, M. 1981. The effect of chronic diazepam treatment on discrimination performance and3H-flunitrazepam binding in the brains of shocked and non-shocked rats. Psychopharmachology (Berlin), 74:132–136.

    Google Scholar 

  55. Chu, D. C. M., Penney, J. B., and Young, A. B. 1987. Autoradiographic evidence for postsynaptic GABAB receptors in rat striatum and hippocampus. Soc. Neurosci. Abstract, 13:952.

    Google Scholar 

  56. Moratalla, R. and Bowery, N. G. 1988. Autoradiographic measurement of GABAA and GABAB binding sites in rat caudate putamen after denervation of neuronal inputs. Br. J. Pharmacol., 95:476P.

    Google Scholar 

  57. Bowery, N. G., Knott, C., Moratalla, R. and Pratt, G. D. 1990. GABAB receptors and their heterogeneity. In:GABA and benzodiazepine receptor subtypes: from molecular biology to clinical practice: (Eds. G. Biggio and E. Costa); Publ. Raven Press, New York; (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moratalla, R., Bowery, N.G. Chronic lesion of corticostriatal fibers reduces GABAB but not GABAA binding in rat caudate putamen: An autoradiographic study. Neurochem Res 16, 309–315 (1991). https://doi.org/10.1007/BF00966094

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966094

Key Words

Navigation