Skip to main content
Log in

Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Kinetics for uptake and release of glutamate were measured in normal, i.e., nontransformed, astrocytes in cultures obtained from the dissociated, cortexenriched superficial parts of the brain hemispheres of newborn DBA mice. The uptake kinetics indicated a minor, unsaturable component together with an intense uptake following Michaelis-Menten kinetics. TheK m (50 μM) was reasonably comparable to the corresponding values in brain slices and in other glial preparations. TheV max (58.8 nmol min−1 mg−1 protein) was, however, much higher than that observed in glial cell lines or peripheral satellite cells, and also considerably higher than that generally reported for brain slices. The release of glutamate was much smaller than the uptake, and only little affected by an increase of the external glutamate concentration, suggesting a net accumulation of glutamate rather than a homoexchange. Such an intense accumulation of glutamate into normal astrocytes may play a major role in brain metabolism and may help keep the extracellular glutamate cohcentration below excitatory levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berl, S., andPurpura, D. P. 1960. Postnatal changes in amino acid content of kitten cerebral cortex. J. Neurochem. 10:237–240.

    Google Scholar 

  2. Krnjevic, K. 1974, Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54:418–540.

    Google Scholar 

  3. Levi, G., Kandera, J., andLajtha, A. 1967. Control of cerebral metabolite levels. I. Amino acid uptake and levels in various species. Arch. Biochem. Biophys. 119:303–311.

    Google Scholar 

  4. Patel, A. J., andBalazs, R. 1970. Manifestation of metabolic compartmentation during the maturation of the rat brain. J. Neurochem. 17:955–971.

    Google Scholar 

  5. Van den Berg, C. J. 1970. Glutamate and glutamine. Pages 355–379,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 3, Plenum Press, New York.

    Google Scholar 

  6. Curtis, D. R., andJohnston, G. A. R. 1974. Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol. 69:97–188.

    Google Scholar 

  7. Hayashi, T. 1954. Effects of sodium glutamate on the nervous system. Keio J. Med. 3:183–192.

    Google Scholar 

  8. Krnjevic, K., andPhillis, J. W. 1963. Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. (Lond.) 165:274–304.

    Google Scholar 

  9. Van Harreveld, A., andFifkova, E., 1970. Glutamate release from the retina during spreading depression. J. Neurobiol. 2:13–29.

    Google Scholar 

  10. Rossiter, R. J. 1955. The relation of ions to metabolism in brain. Can. J. Biochem. Physiol. 33:477–479.

    Google Scholar 

  11. Vrba, R., Gaitonde, M. K., andRichter, D. 1962. The conversion of glucose carbon into protein in the brain and other organs of the rat. J. Neurochem. 9:465–475.

    Google Scholar 

  12. Schousboe, A., Lisy, V., andHertz, L. 1976. Postnatal alterations in effects of potassium on uptake and release of glutamate and GABA in rat brain cortex slices. J. Neurochem. 26:1023–1027.

    Google Scholar 

  13. Altman, J. 1969. DNA metabolism and cell proliferation. Pages 137–182,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 2, Plenum Press, New York.

    Google Scholar 

  14. Privat, A. 1975. Postnatal gliogenesis in the mammalian brain. Int. Rev. Cytol. 40:281–323.

    Google Scholar 

  15. Schousboe, A. 1972. Development of potassium effects on ion concentrations and indicator spaces in rat brain-cortex slices during postnatal ontogenesis. Exp. Brain Res. 15:521–531.

    Google Scholar 

  16. Schousboe, A., Fosmark, H., andHertz, L. 1975. High content of glutamate and of ATP in astrocytes cultured from rat brain hemispheres: Effect of serum withdrawal and of cyclic AMP. J. Neurochem. 25:909–911.

    Google Scholar 

  17. Balcar, N. F., Borg, F., andMandel, P. 1977. High affinity uptake ofl-glutamate andl-aspartate by glial cells. J. Neurochem. 28:87–93.

    Google Scholar 

  18. Faivre-Bauman, A., Rossier, J., andBenda, P. 1974. Glutamate accumulation by a clone of glial cells. Brain Res. 76:371–375.

    Google Scholar 

  19. Henn, F. A., Goldstein, M. N., andHamberger, A. 1974. Uptake of the neurotransmitter candidate glutamate by glia. Nature (Lond.) 249:663–664.

    Google Scholar 

  20. Hökfelt, T., andLjungdahl, Å. 1972. Application of cytochemical techniques to the study of suspected transmitter substances in the nervous system. Pages 1–36,in Costa, E., andGreengard, P. (eds.) Advances in Biochemical Psychopharmacology, Vol. 6, Raven Press, New York.

    Google Scholar 

  21. Schousboe, A., Sveneby, G., andHertz, L. 1977. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29:999–1005.

    Google Scholar 

  22. Kelly, J. S., Jessell, T. M., andSchon F. 1975. Uptake of GABA and glutamate in glial cells in the nervous system. Pages 91–102,in Tumisto, J., andPaasonen, M. K. (eds.), Proceedings of the Sixth International Congress of Pharmacology, Vol. 2, Neurotransmission, Pergamon Press, New York.

    Google Scholar 

  23. McLennan, H. 1976. The autoradiographic localization ofl-[3H] glutamate in rat brain tissue. Brain Res. 115:139–144.

    Google Scholar 

  24. Roberts, P. J. 1976. Amino acid transport in spinal and sympathetic ganglia. Pages 165–178,in Levi, G., Battistin, L., andLajtha, A. (eds.) Transport Phenomena in the Nervous System: Physiological and Pathological Aspects, Advances in Experimental Medicine and Biology, Vol. 69, Plenum Press, New York.

    Google Scholar 

  25. Roberts, P. J., andKeen, P. 1974. [14C] Glutamate uptake and compartmentation in glia of rat dorsal sensory ganglion. J. Neurochem. 23:201–209.

    Google Scholar 

  26. Roberts, P. J., andWatkins, J. C. 1975. Structural requirements for the inhibition ofl-glutamate uptake by glia and nerve endings. Brain Res. 85:120–125.

    Google Scholar 

  27. Schon, F., andKelly, J. S. 1974. Autoradiographic localization of [3H] GABA and [3H] glutamate over satellite glial cells. Brain Res. 66:275–288.

    Google Scholar 

  28. Beart, P. M. 1976. The autoradiographic localization ofl-[3H] glutamate in synaptosomal preparations. Brain Res. 103:350–355.

    Google Scholar 

  29. Booher, J., andSensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105.

    Google Scholar 

  30. Federof, S. The development of glial cells in primary cultures.In Franck, G., Hertz, L., Schoffeniels, E., andTower, D. B. (eds.), Dynamic Properties of Glial Cells, Pergamon Press, Elmsford, New York, (in press).

  31. Bock, E., Jørgensen, O. S., Dittmann, L., andEng, L. F. 1975. Determination of brain-specific antigens in short term cultivated rat astroglia cells and in rat synaptosomes. J. Neurochem. 25:867–870.

    Google Scholar 

  32. Schousboe, A., Hertz, L., andSvenneby, G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2:217–229.

    Google Scholar 

  33. Schousboe, A., Fosmark, H., andSvenneby, G. 1976. Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres. Brain Res. 116:158–164.

    Google Scholar 

  34. Hertz, L., Schousboe, A., andFedoroff, S. 1977. Glutamate uptake, metabolism and release in cultured normal astrocytes. Trans. Am. Soc. Neurochem. 8:206.

    Google Scholar 

  35. Eagle, H. 1959. Amino acid metabolism in mammalian cell cultures. Science 130:432–437.

    Google Scholar 

  36. Bullaro, J. C., andBrookman, D. H. 1976. Comparison of skeletal muscle monolayer cultures initiated with cells dissociated by the vortex and trypsin methods. In Vitro 12:564–570.

    Google Scholar 

  37. Schousboe, A., Bock, E., andHertz, L. Effect of dBcAMP and serum withdrawal on morphological and biochemical differentiation of normal astrocytes in cultures. Page 435,in Abstracts, Sixth International Meeting of the International Soc. Neurochemistry, Copenhagen, 1977 (in press).

  38. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  39. Winegrad, S., andShanes, A. M. 1962. Calcium flux and contractility in guinea pig atria. J. Gen. Physiol. 45:371–394.

    Google Scholar 

  40. Levi, G., andRaiteri, M. 1974. Exchange of neurotransmitter amino acid at nerve endings can simulate high-affinity uptake. Nature (Lond.) 250:735–737.

    Google Scholar 

  41. Raiteri, M., Federico, R., Coletti, A., andLevi, G. 1975. Release and exchange studies relating to the synaptosomal uptake of GABA. J. Neurochem. 24:1243–1250.

    Google Scholar 

  42. Sellstrom, Å., andHenn, F. 1976. Role of exchange in ‘high-affinity’ amino acid neurotransmitter uptake. Trans. Am. Soc. Neurochem. 7:233.

    Google Scholar 

  43. Crowshaw, K., Jessup, S. F., andRamwell, P. W. 1967. Thin layer chromatography of 1-dimethylaminonaphtalene-5-sulphonyl derivatives of amino acids present in superfusates of cat cerebral cortex. Biochem. J. 103:79–85.

    Google Scholar 

  44. Gjessing, L. R., Gjesdahl, P., andSjaastad, O. 1972. The free amino acids in human cerebrospinal fluid. J. Neurochem. 19:1807–1808.

    Google Scholar 

  45. Jasper, H. H., andKoyama, I. 1968. Rate of release of amino acids from the cerebral cortex in the cat as affected by brain stem and thalamic stimulation. Can. J. Physiol. Pharmacal. 47:889–905.

    Google Scholar 

  46. Hamberger, A. 1971. Amino acid uptake in neuronal and glial cell fractions from rabbit cerebral cortex. Brain Res. 31:169–178.

    Google Scholar 

  47. Hamberger, A., Nyström, B., Sellström, Å., andWoiler, C. T. 1976. Amino acid transport in isolated neurons and glia. Pages 221–236.in Levi, G., Battistin, L., andLajtha, A. (eds.) Transport Phenomena in the Nervous System: Physiological and Pathological Aspects, Advances in Experimental Medicine and Biology, Vol. 69, Plenum Press, New York.

    Google Scholar 

  48. Snodgrass, S. R., andIversen, L. L. 1974. Amino acid uptake into human brain tumors. Brain Res. 76:95–107.

    Google Scholar 

  49. Ehinger, B. 1972. Cellular location of the uptake of some amino acids into the rabbiretina. Brain Res. 46:297–311.

    Google Scholar 

  50. Logan, W. J., andSnyder, S. H. 1972. High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 42:413–431.

    Google Scholar 

  51. Levi, G., andRaiteri, M. 1973. Detectability of high and low affinity uptake systems for GABA and glutamate in rat brain slices and synaptosomes. Life Sci. 12:81–88.

    Google Scholar 

  52. Storm-Mathisen, J. 1977. Glutamic acid and excitatory nerve endings: Reduction of glutamic acid uptake after axotomy. Brain Res. 120:379–386.

    Google Scholar 

  53. Cotman, C., Herschman, H., andTaylor, D. 1971. Subcellular fractionation of cultured glial cells. J. Neurobiol. 2:169–180.

    Google Scholar 

  54. Henn, F. A., Anderson, D. J., andRustad, D. G. 1976. Glial contamination of synaptosomal fractions. Brain Res. 101:341–344.

    Google Scholar 

  55. Benjamin, A. M., andQuastel, J. H. 1975. Metabolism of amino acids and ammonia in rat brain cortex slicesin vitro: A possible role of ammonia in brain function. J. Neurochem. 25:197–206.

    Google Scholar 

  56. Shank, R. P., Whiten, J. T., andBaxter, C. F. 1973. Glutamate uptake by the isolated toad brain. Science 181:860–862.

    Google Scholar 

  57. Shank, R. P., andBaxter, C. F. 1975. Uptake and metabolism of glutamate by isolated toad brains containing different levels of endogenous amino acids. J. Neurochem. 24:641–646.

    Google Scholar 

  58. Hertz, L., andSchousboe, A. 1975. Ion and energy metabolism of the brain at the cellular level. Int. Rev. Neurobiol. 18:141–211.

    Google Scholar 

  59. Hertz, L. Biochemistry of glial cells.In Fedoroff, S., andHertz, L. (eds.), Cell, Tissue and Organ Cultures in Neurobiology, Academic Press, New York (in press).

  60. Blasberg, R. G. 1968. Specificity of cerebral amino acid transport: A kinetic analysis. Pages 245–256,in Lajtha, A., andFord, D. H. (eds.) Progress in Brain Research, Brain Barrier Systems, Vol. 29, Elsevier Publishing Co., New York.

    Google Scholar 

  61. Cohen, S. R., andLajtha, A. 1972. Amino acid transport. Pages 543–572,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 7, Plenum Press, New York.

    Google Scholar 

  62. Balcar, V. J., andJohnston, G. A. R., 1972. Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids. J. Neurobiol. 3:295–301.

    Google Scholar 

  63. Benjamin, A. M., andQuastel, J. H. 1976. Cerebral uptakes and exchange diffusionin vitro ofl- andd-glutamates. J. Neurochem. 26:431–441.

    Google Scholar 

  64. Lund-Andersen, H., andKjeldsen, C. S. 1976. Uptake of glucose analogues by rat brain cortex slices: A kinetic analysis based upon a model. J. Neurochem. 27:361–368.

    Google Scholar 

  65. Arnfred, T., andHertz, L. 1971. Effects of potassium and glutamate on brain cortex slices: Uptake and release of glutamic and other amino acids. J. Neurochem. 18:259–265.

    Google Scholar 

  66. Weiss, G. B., andHertz, L. 1974. Effects of different potassium ion concentrations and of procaine and pentobarbital on (14C) glutamate fluxes in rat brain-cortex slices. Biochem. Soc. Trans. 2:274–277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertz, L., Schousboe, A., Boechler, N. et al. Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3, 1–14 (1978). https://doi.org/10.1007/BF00964356

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964356

Keywords

Navigation