Skip to main content
Log in

Lateral hydrodynamic effects of rotating filaments

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

On the basis of the “filament rotation model” that was elaborated for interpretations in cell motility, the lateral hydrodynamic effects of rotating filaments have been investigated by large-scale model experiments. Helices were rotated by small electric motors in a medium of high viscosity (honey or polyethyleneglycol). The observed effects, hitherto not investigated in detail by hydrodynamics, show some features that were attributed to the indefinable “formative power” or “vital force” of the past. The main effects generated by the rotating filaments are (1) flows and flow patterns with “impact zones” where flows collide, (2) regions of excessive pressure and negative pressure (“corner effect”) along a wall, (3) grooves and smoothly shaped ridges on a free fluid surface, and (4) “rolling” motions of freely hanging filaments. All effects and flow patterns depend on the appropriate distribution of rotating and counterrotating filaments. Each change of the rotational direction means a dramatic alteration. The application of the observed effects explains largely the function of the microtubule/microfilament hoops or helices during the cytokinesis of a plant cell. Interpretations or simulations are described for events as the formation of secondary wall thickenings, the orientation of their microfibrils, the motion of the preprophase band microtubules, the formation of the phragmosome, the migration, stationary position and shape of the preprophase nucleus, the girdle-, septum- and H-piece formation of cell walls in algae and some events of morphogenesis inMicrasterias. Further interpretations are related to the lateral flows and to invaginations of free cell membranes, to lateral filament motions, to the “right-left problem”, to the selfintertwining of filaments, to the rotation of a cell body by its flagellum, to the repulsion of chromatids during meiosis and to the tetragonal and hexagonal arrangement of filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht-Bühler, B., 1977: Daughter 3 T 3 cells, are they mirror images of each other? — J. Cell Biol.72: 595–603.

    Article  Google Scholar 

  • Allen, R. D., Weiss, D. G., Hayden, J. H., Born, D. T., Fujiwake, H., Simpson, M., 1985: Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. — J. Cell Biol.100: 1736–1752.

    Article  CAS  PubMed  Google Scholar 

  • Apostolakos, P., Galatis, B., 1985: Studies on the development of the air pores and air chambers ofMarchantia paleacea. 4. Cell plate arrangement in initial aperture cells. — Protoplasma128: 136–146.

    Article  Google Scholar 

  • Bajer, A., Molé-Bajer, J., 1975: Lateral movements in the spindle and the mechanism of mitosis. — InInoué, S., Stephens, R.E., (Eds.): Molecules and cell movement, pp. 77–96. — New York: Raven Press.

    Google Scholar 

  • —, 1987: Multiple mitotic transports expressed by chromosome and particle movement. — InWohlfarth-Bottermann, K.-E., (Ed.): Nature and function of cytoskeletal proteins in motility and transport. — Fortschr. Zool.34; pp. 171–186. — Stuttgart, New York: G. Fischer.

    Google Scholar 

  • Bavink, B., 1940: Ergebnisse und Probleme der Naturwissenschaften. 6th edn. — Leipzig: S. Hirzel.

    Google Scholar 

  • Bjerknes, V., 1902: Vorlesungen über hydrodynamische Fernkräfte nachC. A. Bjerknes' Theorie. — Leipzig: Barth.

    Google Scholar 

  • Blumenbach, J. F., 1781: Über den Bildungstrieb und das Zeugungsgeschäfte. — Göttingen. (Repr. Stuttgart 1971; Ed:Karolyi). Cited after Löw 1980.

  • Bohr, N., 1932: Licht und Leben. — Naturwissenschaften21: 245 (1033). Zitiert nachWeizsäcker, C. F., 1988: Aufbau der Physik. — München: Deutscher Taschenbuch Verlag.

    Google Scholar 

  • Bovee, E. C., 1964: Morphological differences among pseudopodia of various small amoebae and their functional significance. — InAllen, R. D., Kamiya, N., (Eds.): Primitive motile systems in cell biology, pp. 189–219. — New York: Academic Press.

    Chapter  Google Scholar 

  • Brook, A., 1981: The biology of desmids. — Bot. Monogaphs16. — Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Brown, R. C., Lemmon, B. E., 1984: Plastid apportionment and preprophase microtubule bands in monoplastidic root meristem cells ofIsoetes andSelaginella. — Protoplasma123: 95–103.

    Article  Google Scholar 

  • Burgess, J., 1970: Interactions between microtubules and the nuclear envelope during mitosis in a fern. — Protoplasma71: 77–89.

    Article  Google Scholar 

  • —, 1967: A function of the preprophase band of microtubules inPhleum pratense. — Planta75: 319–326.

    Article  CAS  PubMed  Google Scholar 

  • —, 1968: The relationship between the endoplasmic reticulum and microtubular aggregation and disaggregation. — Planta80: 1–14.

    Article  Google Scholar 

  • Bynum, R. D., Allen, R. D., 1980a: Torsional movements in the ameba,Chaos carolinensis, suggests a helical cytoskeletal organization. — J. Protozool.27: 420–423.

    Article  Google Scholar 

  • —1980b: Non-axial force production in the amoeba. — J. Cell Biol.87, (MF. 1613): 216a.

  • Chevier, C., Dacheuse, J. L., 1987: Analysis of the flagellar bending waves of ejaculated ram sperm. — Cell Motil. Cytoskel.8: 261–273.

    Article  Google Scholar 

  • Cox, G., Hawes, C. R., van der Lübbe, L., Juniper, B. E., 1987: High-voltage electron microscopy of whole, critical-point dried plant cells. 2. Cytoskeletal structures and plastid motility inSelaginella. — Protoplasma140: 173–186.

    Article  Google Scholar 

  • Crick, F. H. C., 1952: Is α-keratin a coiled coil? — Nature170: 882–883.

    Article  CAS  PubMed  Google Scholar 

  • —, 1953: The packing of α-helices: simple coiled-coils. — Acta Cryst.6: 689.

    Article  CAS  Google Scholar 

  • Crüger, H., 1855: Zur Entwicklungsgeschichte der Zellwand. — Bot. Z.13: 601–613, 617–629.

    Google Scholar 

  • Czarska, L., Grebecki, A., 1965: Rotary movement inAmoeba proteus. — In: Progress in protozoology, Second Int. Conf. Protozool. London, Abstr. 327.

  • Dippel, L., 1867: Die Entstehung der wandständigen Protoplasmaströmchen. — Abhandl. Naturforsch. Ges. Halle10: 53–68.

    Google Scholar 

  • Drawert, H., Mix, M., 1962: Zur Funktion des Golgi-Apparates in der Pflanzenzelle. — Planta58: 448–452.

    Article  Google Scholar 

  • Driesch, H., 1899: Die Lokalisation morphologischer Vorgänge, ein Beweis vitalistischen Geschehens. — Arch. Entw. mech.8: 773.

    Google Scholar 

  • —1909 f: Philosophie des Organischen, 1st edn., Leipzig: W. Engelmann. 4th edn. — Leipzig 1928: Quelle & Meyer.

  • Dubois-Reymond, E., 1848: Untersuchungen über tierische Elektrizität. — Berlin.

  • Dutrochet, H. J., 1846: Le magnétisme peut-il exercer de l'influence sur la circulation duChara? — Compt. Rend. Acad. Sci. Paris22: 619–622.

    Google Scholar 

  • Falconer, M. M., Seagull, R. W., 1988: Xylogenesis in tissue culture 3: Continuing wall deposition during tracheary element development. — Protoplasma144: 10–16.

    Article  Google Scholar 

  • Fischer, E. P., 1985: Licht und Leben. Ein Bericht überMax Delbrück, den Wegbereiter der Molekularbiologie. — Konstanz: Konstanzer Universitätsverlag.

    Google Scholar 

  • Foissner, I., Jarosch, R., 1981: The motion mechanics ofNitella filaments (cytoplasmic streaming): their imitation in detail by screw-mechanical models. — Cell Motil.1: 371–385.

    Article  Google Scholar 

  • Forer, A., Jackson, W. T., 1976: Actin filaments in the endosperm mitotic spindles in a higher plant,Haemanthus katherinae Baker. — Cytobiologie12: 199–214.

    Google Scholar 

  • Franke, W. W., Schiller, D. L., Grund, Ch., 1982: Protofilaments and annular structures as intermediates during reconstruction of cytokeratin filaments in vitro. — Biol. Cell46: 257–268.

    Google Scholar 

  • Galatis, B., 1982: The organization of microtubules in guard cell mother cells ofZea mays. — Canad. J. Bot.60: 1148–1166.

    Article  Google Scholar 

  • —, 1979: On the differential divisions and preprophase microtubule bands involved in the development of stomata ofVigna sinensis L. — J. Cell Sci.37: 11–37.

    CAS  PubMed  Google Scholar 

  • —, 1982: Pre-prophase microtubule band and local wall thickenings in guard cell mother cells of someLeguminosae. — Ann. Bot.50: 779–791.

    Google Scholar 

  • —, 1983: Synchronous organization of two preprophase microtubule bands and final cell plate arrangement in subsidary cell mother cells of someTriticum species. — Protoplasma117: 24–39.

    Article  Google Scholar 

  • Geitler, L., 1960: Spontane Rotation und Oscillation des Chromatophors in den Haarzellen und Zoosporangien vonColeochaete soluta. — Planta55: 115–142.

    Article  Google Scholar 

  • —, 1961: Spontaneous partial rotations and oscillations of the protoplasm inColeochaete and otherChlorophyceae. — Amer. J. Bot.48: 738–741.

    Article  Google Scholar 

  • —, 1962a: Die Entwicklungsgeschichte vonColeochaete nitellarum und das Rechts-Links-Problem. — Österr. Bot. Z.109: 529–539.

    Article  Google Scholar 

  • —, 1962b: Inäquale Teilungen von Chromatophoren und die ersten Teilungen des Keimlings vonColeochaete scutata. — Planta58: 521–530.

    Article  Google Scholar 

  • —, 1962c: Entwicklung und Beziehung zum Wirt der ChytridialeScherffeliomycopsis coleochaetis n. gen., n. spec.. — Österr. Bot. Z.109: 250–275.

    Article  Google Scholar 

  • —, 1976: Spontane Rotation und Oszillation des Chromatophors und Cytoplasmas bei zweiSpirotaenia-Arten. — Protoplasma88: 265–278.

    Article  Google Scholar 

  • Gerrath, J. F., 1968: Studies on the ultrastructure of desmids and its relation to their taxonomy. — PhD. Thesis, University of British Columbia. Cited afterLacalli 1973.

  • Goldacre, R., 1956: The regulation of movement and polar organization inAmoeba by intracellular feedback. — Abstr. Proc. 1st Int. Cong. Cybernetics, Namur: 715–725.

  • Goosen-De Roo, L., Bakhuizen, R., Van Spronsen, P. C., Libbenga, K. R., 1984: The presence of extended phragmosomes containing cytoskeletal elements in fusiform cambial cells ofFraxinus excelsior L. — Protoplasma122: 145–152.

    Article  Google Scholar 

  • Gunning, B. E. S., 1981: Microtubules and cytomorphogenesis in a developing organ: The root primordium ofAzolla pinnata. — InKiermayer, O., (Ed.): Cytomorphogenesis in plants. — Cell Biology Monographs8: 302–324. — Wien, New York: Springer.

    Chapter  Google Scholar 

  • —, 1982: The cytokinetic apparatus: Is development and spatial regulation. — InLloyd, C. W., (Ed.): The cytoskeleton in plant growth and development, pp. 229–292. — London, New York: Academic Press.

    Google Scholar 

  • Haberlandt, G., 1887: Über die Beziehungen zwischen Funktion und Lage des Zellkerns bei den Pflanzen. — Jena: G. Fischer.

    Google Scholar 

  • Hardham, A. R., 1982: InLloyd, C. W., (Ed.): The cytoskeleton in plant growth and development. — London, New York: Academic Press.

    Google Scholar 

  • —, 1978: Structure of cortical microtubule arrays in plant cells. — J. Cell Biol.77: 14–34.

    Article  CAS  PubMed  Google Scholar 

  • Hauptfleisch, P., 1888: Zellmembran und Hüllgallerte der Desmidiaceen. — Mitt. Naturwiss. Ver. Neupommern u. Rugen20: 59–136.

    Google Scholar 

  • Heath, I. B., Seagull, R. W., 1982: Oriented cellulose fibrils and the cytoskeleton: a critical comparison of models. — InLloyd, C. W., (Ed.): The cytoskeleton in plant growth and development, pp. 163–182. — London, New York: Academic Press.

    Google Scholar 

  • Heitler, W., 1966: Der Mensch und die naturwissenschaftliche Erkenntnis. — Wiesbaden: Vieweg.

    Google Scholar 

  • —, 1970: Naturphilosophische Streifzüge. — Wiesbaden: Vieweg.

    Book  Google Scholar 

  • —, 1978: Über die Komplementarität von lebloser und lebender Materie. — Scheidewege8: 439–459.

    Google Scholar 

  • Hepler, P. K., 1981: Morphogenesis of tracheary elements and guard cells. — InKiermayer, O. (Ed.): Cytomorphogenesis in plants. — Cell Biology Monographs8: 327–347. — Wien, New York: Springer.

    Chapter  Google Scholar 

  • —, 1971: The role of microtubules in vessel member differentiation inColeus. — Protoplasma72: 213–236.

    Article  Google Scholar 

  • —, 1963: The fine structure of young tracheary xylem elements arising by redifferentiation of parenchyma in woundedColeus stem. — J. Exp. Bot.14: 496–503.

    Article  Google Scholar 

  • —, 1964: Microtubules and fibrils in the cytoplasm ofColeus cells undergoing secondary wall deposition. — J. Cell Biol.20: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogetsu, T., 1986: Re-formation of microtubules inClosterium ehrenbergii Meneghini after cold-induced depolymerization. — Planta167: 437–443.

    Article  CAS  PubMed  Google Scholar 

  • —, 1985: Immunofluorescence microscopy of microtubule arrangement inClosterium acerosum (Schrank)Ehrenberg. — Planta166: 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Jarosch, R., 1969: Das sterische Verhalten der Alpha-Helix. — Z. Naturforsch.24b: 672–680.

    Google Scholar 

  • —, 1971: Vergleichende Studien zur amöboiden Beweglichkeit. — Protoplasma72: 79–100.

    Article  CAS  PubMed  Google Scholar 

  • —, 1972: The participation of rotating fibrils in biological movements. — Acta Protozool.11: 23–36.

    Google Scholar 

  • —, 1979: The torsional movement of tropomyosin and the molecular mechanism of the thin filament motion. — InHatano, S., Ishikawa, H., Sato, H., (Eds.): Cell motility: molecules and organization, pp. 291–319. — Tokyo: University of Tokyo Press.

    Google Scholar 

  • —, 1985: The filament rotation model: molecular and screw-mechanical details. — InAlia, E. E., Arena, N., Russo, M. A., (Eds.): Contractile proteins in muscle and non-muscle cell systems, pp. 239–251. — New York: Praeger.

    Google Scholar 

  • —, 1986: A model for the molecular basis of contractility and sliding as demonstrated by helix models. — Cell Motil. Cytoskel.6: 229–236.

    Article  CAS  Google Scholar 

  • —, 1987a: Screw-mechanical models for the action of actin- and tubulin-containing filaments. — InWohlfarth-Bottermann, K.-E., (Ed.): Nature and function of cytoskeletal proteins in motility and transport. — Progress in Zoology34: 231–249. — Stuttgart, New York: G. Fischer.

    Google Scholar 

  • Jarosch, R., 1987b: Mechanics and hydrodynamics of rotating filaments. — InBereiter-Hahn, J., Anderson, O. R., Reif, W.-E., (Eds.): Cytomechanics, pp. 54–75. — Berlin, Heidelberg, New York, Tokyo: Springer.

    Chapter  Google Scholar 

  • —, 1988: Screw-mechanical models in relation to cytoplasmic streaming. — Protoplasma [Suppl.1]: 15–26.

    Article  Google Scholar 

  • —, 1982: A rotation model for microtubule and filament sliding. — Eur. J. Cell Biol.26: 295–302.

    CAS  PubMed  Google Scholar 

  • —, 1985: Filament winding and unwinding as a basis for microtubule-behavior: a theoretical analysis with helix-models. — InAlia, E. E., Arena, N., Russo, M. A., (Eds.), pp. 229–237. — New York: Praeger.

    Google Scholar 

  • —, 1962: Die Formdifferenzierung vonMicrasterias-Zellen nach lokaler Lichteinwirkung. — Planta58: 95–112.

    Article  Google Scholar 

  • Kakimoto, T., Shibaoka, H., 1987: Actin filaments and microtubules in the preprophase band and phragmoplast ofTobacco cells. — Protoplasma140: 151–156.

    Article  Google Scholar 

  • Kallio, P., 1951: The significance of nuclear quantity in the genusMicrasterias. — Ann. Bot. Soc. Zool. Bot. Fenn. Vanamo24: 1–122.

    Google Scholar 

  • —, 1954: Morphogenetic studies inMicrasterias rotata (Grev.)Ralfs var.evoluta Turner (Desmidiaceae). — Arch. Soc. Zool. Bot. Fenn. Vanamo8: 118–122.

    Google Scholar 

  • Kamiya, N., 1981: Physical and chemical basis of cytoplasmic streaming. — Ann. Rev. Plant Physiol.32: 205–236.

    Article  CAS  Google Scholar 

  • Kant, I., 1785: Metaphysische Anfangsgründe der Naturwissenschaft. Gesammelte Schriften, Edition der Preußischen Akademie der Wiss. Berlin, 1900–1978 ff.

    Google Scholar 

  • —, 1790: Kritik der Urteilskraft. Gesammelte Schriften, Edition der Preußischen Akademie der Wiss. Berlin, 1900–1978 ff.

    Google Scholar 

  • Kiermayer, O., 1964: Untersuchungen über die Morphogenese und Zellwandbildung beiMicrasterias denticulata Bréb. — Protoplasma59: 382–420.

    Article  Google Scholar 

  • —, 1965:Micrasterias denticulata (Desmidiaceae) — Morphogenese. Film E 868. — Göttingen: Inst. Wiss. Film.

    Google Scholar 

  • —, 1966: Differenzierung und Wachstum vonMicrasterias denticulata (Conjugatae). Film C 924. — Göttingen: Inst. Wiss. Film.

    Google Scholar 

  • —, 1967: Das Septum-Initialmuster vonMicrasterias denticulata und seine Bildung. — Protoplasma64: 481–484.

    Article  Google Scholar 

  • —, 1968: The distribution of microtubules in differentiating cells ofMicrasterias denticulata Bréb. — Planta83: 223–236.

    Article  CAS  PubMed  Google Scholar 

  • —, 1970a: Elektronenmikroskopische Untersuchungen zum Problem der Cytomorphogenese vonMicrasterias denticulata Bréb. 1. Allgemeiner Überblick. — Protoplasma69: 97–132.

    Article  Google Scholar 

  • —, 1970b: Causal aspects of cytomorphogenesis inMicrasterias. — Ann. New York Acad. Sci.175: 686–701.

    Article  CAS  Google Scholar 

  • —, 1981: Cytoplasmic basis of morphogenesis inMicrasterias. — InKiermayer, O., (Ed.): Cytomorphogenesis in plants. — Cell Biology Monographs8: 147–189. — Wien, New York: Springer.

    Chapter  Google Scholar 

  • —, 1962: Die Formbildung vonMicrasterias rotata Ralfs und ihre experimentelle Beeinflussung. — Protoplasma54: 382–420.

    Article  Google Scholar 

  • Kuroda, K., Manabe, E., 1983: Microtubule-associated cytoplasmic streaming inCaulerpa. — Proc. Japan Acad.59 B: 131–134.

    Article  Google Scholar 

  • Küster, E., 1951: Die Pflanzenzelle. 2nd edn. — Jena: G. Fischer.

    Google Scholar 

  • Lacalli, T. C., 1973: Cytokinesis inMicrasterias rotata. Problems of directed primary wall deposition. — Protoplasma78: 433–442.

    Article  Google Scholar 

  • Lancelle, S. A., Cresti, M., Hepler, P. K., 1987: Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes ofNicotiana alata. — Protoplasma140: 141–150.

    Article  Google Scholar 

  • Langford, G. M., Inoué, S., 1979: Motility of the microtubular axostyle inPhrysonympha. — J. Cell Biol.80: 521–538.

    Article  CAS  PubMed  Google Scholar 

  • Liebig, J., 1844: Chemische Briefe. Cited afterWenzl, 1950.

  • Lloyd, C. W., Barlow, P. W., 1982: The co-ordination of cell division and elongation: the role of the cytoskeleton. — InLloyd, C. W., (Ed.): The cytoskeleton in plant growth and development, pp. 203–228. — London, New York: Academic Press.

    Google Scholar 

  • —, 1985: A new spring for plant cell biology: microtubules as dynamic helices. — Trends Biochem. Sci.10: 476–478.

    Article  CAS  Google Scholar 

  • Lorch, W., 1931: Anatomie der Laubmoose,Linsbauers Handbuch der Pflanzenanatomie, Lief. 28. Cited afterKüster 1951.

  • Löw, R., 1980: Philosphie des Lebendigen. — Frankfurt/Main: Suhrkamp.

    Google Scholar 

  • Maitra, S. C., De, D. N., 1971: Role of microtubules in secondary thickening of differentiating xylem element. — J. Ultrastruct. Res.34: 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Marc, J., Gunning, B. E. S., 1988: Monoclonal antibodies to a fern spermatozoid detect novel components of the mitotic and cytokinetic apparatus in higher plant cells. — Protoplasma142: 15–24.

    Article  Google Scholar 

  • Meindl, U., 1982a: Local accumulations of membrane associated calcium according to cell pattern formation inMicrasterias denticulata, visualized by chlorotetracycline fluorescence. — Protoplasma110: 143–146.

    Article  CAS  Google Scholar 

  • —, 1982b: Patterned distribution of membrane-associated Ca2+ during pore formation inMicrasterias. — Protoplasma112: 138–141.

    Article  CAS  Google Scholar 

  • —, 1983: Cytoskeletal control of nuclear migration and anchoring in developing cells ofMicrasterias denticulata and the change caused by the anti-microtubular herbicide Amiprophosmethyl (APM). — Protoplasma118: 75–90.

    Article  CAS  Google Scholar 

  • —, 1985: Aberrant nuclear migration and microtubule arrangement in a defect mutant cell ofMicrasterias thomasiana. — Protoplasma126: 74–90.

    Article  Google Scholar 

  • —, 1986: Autonomous circular and radial motions of the nucleus inPleurenterium tumidum and their relation to cytoskeletal elements and the plasma membrane. — Protoplasma135: 50–66.

    Article  Google Scholar 

  • Mizuta, S., 1985: Evidence for the regulation of the shift in cellulose microfibril orientation in freeze-fractured plasma membrane ofBoergesenia forbesii. — Plant Cell Physiol.26: 53–62.

    CAS  Google Scholar 

  • Molisch, H., 1888: Zur Kenntnis der Thyllen, nebst Beobachtungen über Wundheilung in der Pflanze. — Sitzungsber. Akad. Wiss. Wien, math.-naturw. Kl.97, Abt.1: 264.

    Google Scholar 

  • Mussill, M., Jarosch, R., 1972: Bacterial flagella rotate and do not contract. — Protoplasma75: 465–469.

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus-Url, G., Schweiger, H.-G., 1984: The lid-forming apparatus in cysts of the green algaAcetabularia mediterranea. — Protoplasma122: 120–124.

    Article  Google Scholar 

  • Noguchi, T., Uyeda, K., 1988: Cortical microtubules and cortical microfilaments in the green algaMicrasterias pinnatifida. — Protoplasma143: 188–192.

    Article  Google Scholar 

  • Nowakowska, G., 1978: Twisting of suspended monotactic specimens ofAmoeba proteus. — Acta Protozool.17: 347–352.

    Google Scholar 

  • Oster, G. F., 1983: Mechanochemistry and morphogenesis. — InOplatka, A., Balaban, M., (Eds.): Biological structures and coupled flows, pp. 417–443. — New York: Academic Press.

    Google Scholar 

  • Ostwald, W., 1902: Vorlesungen über Naturphilosophie. — Leipzig: Veit & Comp.

    Google Scholar 

  • Packard, M. J., Stack, S. M., 1976: The preprophase band: possible involvement in the formation of the cell wall. — J. Cell Sci.22: 403–411.

    CAS  PubMed  Google Scholar 

  • Palevitz, B. A., 1987: Actin in the preprophase band ofAllium cepa. — J. Cell Biol.104: 1515–1519.

    Article  CAS  PubMed  Google Scholar 

  • Pauling, L., Correy, R. B., 1951a: Atomic coordinates and structure factors for two helical configurations of polypeptide chains. — Proc. Natl. Acad. Sci. U.S.A.37: 235–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • —, 1951b: The structure of synthetic polypeptides. — Proc. Natl. Acad. Sci. U.S.A.37: 241–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauling, L., Correy, R. B., 1951c: The structure of hair, muscle, and related proteins. — Proc. Natl. Acad. Sci. U.S.A.37: 261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • —, 1953: Compound helical configurations of polypeptide chains: structure of proteins of the α-keratin type. — Nature171: 59.

    Article  CAS  PubMed  Google Scholar 

  • —, 1951: The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. — Proc. Natl. Acad. Sci. U.S.A.37: 205–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett-Heaps, J. D., 1969: Preprophase microtubules and stomatal differentiation; some effects of centrifugation on symmetrical and asymmetrical cell division. — J. Ultrastruct. Res.27: 24–44.

    Article  Google Scholar 

  • —, 1972: Cell division inCosmarium botrytis. — J. Phycol.8: 343–360.

    Google Scholar 

  • —, 1973: Cell division and wall structure inMicrospora. — New Phytol.72: 347–355.

    Article  Google Scholar 

  • —, 1975: The green algae. — Sunderland, Mass.: Sinauer Assoc.

    Google Scholar 

  • —, 1966: Relationship of cellular organelles to the formation and development of the plant cell wall. — J. Exper. Bot.17: 20–26.

    Article  Google Scholar 

  • —, 1970: Mitosis, cytokinesis, and cell elongation and the desmidClosterium littorale. — J. Phycol.6: 189–215.

    Google Scholar 

  • Purcell, E., 1977: Life at low Reynolds number. — Amer. J. Phys.45: 3–11.

    Article  Google Scholar 

  • Quader, H., Deichgräber, G., Schnepf, E., 1986: The cytoskeleton ofCobaea seed hairs: patterning during cell-wall differentiation. — Planta168: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Schliwa, M., Euteneuer, U., Koonce, P., 1987: Identification of a protein involved in microtubule-dependent organelle movements of the giant amoeba,Reticulomyxa. — InWohlfarth-Bottermann, K.-E., (Ed.): Nature and function of cytoskeletal proteins in motility and transport. — Progress in Zoology34: 157–169. — Stuttgart, New York: G. Fischer.

    Google Scholar 

  • Schnepf, E., 1973: Mikrotubulus-Anordnung und -Umordnung, Wandbildung und Zellmorphogenese in jungenSphagnum-Blättchen. — Protoplasma78: 145–173.

    Article  Google Scholar 

  • —, 1974: Microtubules and cell wall formation. — Portugal Acta Biol. Sér.A 14: 451–461.

    Google Scholar 

  • —, 1984: Pre- and postmitotic reorientation of microtubule arrays in youngSphagnum leaflets: transition stages and initiation sites. — Protoplasma120: 100–112.

    Article  Google Scholar 

  • —, 1987: Functions of microtubules in plant cells. — InWohlfarth-Bottermann, K.-E. (Ed.): Nature and function of cytoskeletal proteins in motility and transport. — Progress in Zoology34: 115–124. — Stuttgart, New York: G. Fischer.

    Google Scholar 

  • —, 1978: Structure, function and development of the peristome of the moss,Rhacopilum tomentosum, with special reference to the problem of microfibril orientation by microtubules. — Protoplasma97: 221–240.

    Article  Google Scholar 

  • Schoenberg, C. F., Stewart, M., 1980: Filament formation in smooth muscle homogenates. — J. Muscle Res. Cell Motil.1: 117–126.

    Article  Google Scholar 

  • Schrödinger, E., 1944: What is life? — Cambridge: Cambridge University Press.

    Google Scholar 

  • Schulz, D., Jarosch, R., 1980: Rotating microtubules as a basis for anaphase spindle elongation in diatoms. — Eur. J. Cell Biol.20: 249–253.

    CAS  PubMed  Google Scholar 

  • Seagull, R. W., 1978: Arrangement of microtubules and microfilaments during oriented secondary wall formation. — InSturgess, J. M., (Ed.): 9th int. congr. on electron microscopy. — Toronto: 262–263.

  • —, 1979: The effect of tannic acid on the in vivo preservation of microfilaments. — Eur. J. Cell Biol.20: 184–188.

    CAS  PubMed  Google Scholar 

  • —, 1980: The organization of cortical microtubule arrays in the radish root hair. — Protoplasma103: 205–229.

    Article  Google Scholar 

  • Sinnott, E., Bloch, R., 1940: Cytoplasmic behaviour during division of vacuolate plant cells. — Proc. Natl. Acad. Sci. U.S.A.26: 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinnott, E., Bloch, R., 1941a: Division in vacuolate plant cells. — Amer. J. Bot.28: 225–232.

    Article  Google Scholar 

  • —, 1941b: The relative position of cell walls in developing plant tissues. — Amer. J. Bot.28: 607–617.

    Article  Google Scholar 

  • —, 1945: The cytoplasmic basis of intracellular patterns in vascular differentiation. — Amer. J. Bot.32: 151–157.

    Article  Google Scholar 

  • Tamm, S. L., 1976: Properties of a rotary motor in eucaryotic cells. — InGoldmann, R., Pollard, T., Rosenbaum, J., (Eds.): Cell motility, part C, pp. 949–967. — New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • —, 1979: Membrane movements and fluidity during rotational motility of a termite flagellate. — J. Cell Biol.80: 495–509.

    Article  Google Scholar 

  • Tilney, L. G., 1975: Actin filaments in the acrosomal reaction ofLimulus sperm. — J. Cell Biol.65: 289–310.

    Article  Google Scholar 

  • —, 1987: Movements of the actin filament bundle inMytilus sperm: a new mechanism is proposed. — J. Cell Biol.104: 981–993.

    Article  CAS  PubMed  Google Scholar 

  • Tippit, D. H., Schulz, D., Pickett-Heaps, J. D., 1978: Analysis of the distribution of spindle microtubules in the diatomFragilaria. — J. Cell Biol.79: 737–763.

    Article  CAS  PubMed  Google Scholar 

  • —, 1983: Near-neighbor analysis of spindle microtubules in the algaOchromonas. — Eur. J. Cell Biol.30: 9–17.

    CAS  PubMed  Google Scholar 

  • Travis, J. L., Kenealy, J. F. X., Allen, R. D., 1983: Studies on the motility of theForaminifera. 2. The dynamic microtubular cytoskeleton of the reticulopodial network ofAllogromia laticollaris. — J. Cell Biol.97: 1668–1676.

    Article  CAS  PubMed  Google Scholar 

  • Unger, F., 1846: Grundzüge der Anatomie und Physiologie der Pflanzen. — Wien: Carl Gerold.

    Google Scholar 

  • Uyeda, T. Q. P., Furuya, M., 1987: ATP-induced relative movement between microfilaments and microtubules in myxomycete flagellates. — Protoplasma140: 190–192.

    Article  CAS  Google Scholar 

  • Venverloo, C. J., Hovenkamp, P. H., Weeda, A. J., Libbenga, K. R., 1980: Cell division inNautilocalyx explants. 1. Phragmosome, preprophase band and plane of division. — Z. Pflanzenphysiol.100: 161–174.

    Article  Google Scholar 

  • Waris, H., 1950: Cytophysiological studies onMicrasterias. 1. Nuclear and cell division. — Physiol. Plant.3: 1–16.

    Article  Google Scholar 

  • Wenzl, A., 1950: Materie und Leben als Probleme der Naturphilosophie. — Stuttgart: Curt E. Schwab.

    Google Scholar 

  • Wiche, G., 1985: High-molecular-weight microtubule associated proteins (MAPS): a ubiquitous family of cytoskeletal connecting links. — Trends Biochem. Sci.10: 67–70.

    Article  CAS  Google Scholar 

  • Wick, S. M., Duniec, J., 1983: Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. 1. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. — J. Cell Biol.97: 235–243.

    Article  CAS  PubMed  Google Scholar 

  • —, 1984: Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. 2. Transition between the preprophase band and the mitotic spindle. — Protoplasma122: 45–55.

    Article  Google Scholar 

  • Willison, J. H. M., Brown, R. M., Jr., 1978a: Cell wall structure and deposition inGlaucocystis. — J. Cell Biol.77: 103–119.

    Article  CAS  PubMed  Google Scholar 

  • —, 1978b: A model for the pattern of deposition of microfibrils in the cell wall ofGlaucocystis. — Planta141: 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Wolff, C. F., 1759: Theoria generationis. — Halle. Reprint: Hildesheim 1966. — Cited after Löw 1980.

  • Wooding, F. B. P., Northcote, D. H., 1964: The development of the secondary wall of the xylem inAcer pseudoplatanus. — J. Cell Biol.23: 327–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodrum, D. T., Linck, R. W., 1980: Structural basis of motility in the microtubular axostyle: implications for cytoplasmic microtubule structure and function. — J. Cell Biol.87: 404–414.

    Article  CAS  PubMed  Google Scholar 

  • Yurchenco, P. D., Ruben, G. C., 1987: Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. — J. Cell Biol.105: 2559–2568.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. DrLothar Geitler on the occasion of the 90th anniversary of his birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarosch, R. Lateral hydrodynamic effects of rotating filaments. Plant Syst Evol 164, 285–322 (1989). https://doi.org/10.1007/BF00940444

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00940444

Key words

Navigation