Skip to main content
Log in

Role of calcium and erythrocyte cytoskeleton phosphorylation in the invasion ofPlasmodium falciparum

  • Original Investigations
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The role of calcium in the invasion of the human erythrocyte by the parasitePlasmodium falciparum was studied. The intraerythrocytic and intraparasitic concentrations of Ca2+ were modified using calcium-ionophore A23187 and the chelator EGTA. The Ca2+ inside the parasite appared to be necessary for the normal completion of invasion. We determined that in recently invaded erythrocytes (2 h), the Ca2+ concentration increased about 10 tims. Merozoite invasion produced a decrease in β-spectrin phosphorylation and an increase in the phosphorylation of a protein with band 4.1 mobility. These changes were similar to those produced by an ionophore-mediated Ca2+ influx in uninfected erythrocytes. These facts support the idea that a calcium influx into erythrocytes might precede or accompany merozoite invasion, triggering a series of molecular events, including phosphorylation and dephosphorylation of cystoskeletal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

IMP:

intramembranous particles

EGTA:

ethyleneglycol-bis-(β-aminoethyl ether)N,N,N′,N′-tetraacetic acid

EDTA:

ethylene diaminetetraacetic acid

HBS:

HEPES buffer (20 mM, pH 7.2, 160 mM NaCl)

TPA:

12-O-tetradecanoyl phorbol-13-acetate

DMSO:

dimethylsulfoxide

BSA:

bovine serum albumin

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Aikawa M, Miller LH, Johnson J, Rabbege J (1978) Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 77: 72–82

    Google Scholar 

  • Aikawa M, Miller LH, Rabbege JR, Epstein N (1981) Freezefracture study on the erythrocyte membrane during malarial parasite invasion. J Cell Biol 91: 55–62

    Google Scholar 

  • Akao S (1981) X-ray electron microscopic analysis ofToxoplasma gondii. Zentralbl Bakteriol Hyg [A] 250: 407–412

    Google Scholar 

  • Allan D, Michell RH (1978) A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes. Biochim Biophys Acta 508: 277–286

    Google Scholar 

  • Anderson RA, Lovrien RE (1984) Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature 307: 655–658

    Google Scholar 

  • Anderson RA, Marchesi VT (1985) Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature 318: 295–298

    Google Scholar 

  • Anderson J, Tyler JM (1980) State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. J Biol Chem 255: 1259–1265

    Google Scholar 

  • Baker PF, Knight DE (1986) Exocytosis: control by calcium and other factors. Br Med Bull 42: 399–404

    Google Scholar 

  • Bannister LH, Butcher GA, Dennis ED, Mitchel GH (1975) Structure and invasive behaviour ofPlasmodium knowlesi merozoites in-vitro. Parasitology 71: 483–491

    Google Scholar 

  • Bannister LH, Butcher GA, Mitchell GH (1977) Recent advances in understanding the invasion of erythrocytes by merozoites ofPlasmodium knowlesi. Bull WHO 55: 163–169

    Google Scholar 

  • Bennett J, Weeds A (1986) Calcium and the cytoskeleton. Br Med Bull 42: 385–390

    Google Scholar 

  • Birchmeier W, Singer SJ (1977) On the mechanism of ATP-induced shape changes in human erythrocyte membranes: II. The role of ATP. J Cell Biol 973: 638–646

    Google Scholar 

  • Bond G, Hudgins PM (1980) Inhibition of red cell Ca2+-ATPase by vanadate. Biochim Biophys Acta 600: 781–790

    Google Scholar 

  • Brenner S, Korn E (1979) Spectrin-actin interactions: Phosphorylated and dephosphorylated spectrin tetramer crosslink F-actin. J Biol Chem 254: 8620–8627

    Google Scholar 

  • Burns ER, Pollack S (1988)P. falciparum infected erythrocytes are capable of endocytosis. In vitro Cell Dev Biol 24(5): 481–486

    Google Scholar 

  • Chasis JA, Mohandas N, Shohet SB (1985) Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins. J Clin Invest 75: 1919–1926

    Google Scholar 

  • Dluzewski AR, Rangachari K, Wilson RJM, Grazer WB (1983) A cytoplasmic requirement of red cells for invasion by malarial parasites. Mol Biochem Parasitol 9: 145–160

    Google Scholar 

  • Dvorak JA, Miller LH, Whitehouse WC, Shiroishi T (1975) Invasion of erythrocytes by malaria merozoites. Science 187: 748–750

    Google Scholar 

  • Eder PS, Soong C-J, Tao M (1986) Phosphorylation reduces the affinity of protein 4.1 for spectrin. Biochemistry 25: 1764–1770

    Google Scholar 

  • Friedman MJ, Blankenberg T, Sensabaugh G, Tenforde TS (1984) Recognition and invasion of human erythrocytes by malarial parasites: contribution of sialoglycoproteins to attachment and host specificity. J Cell Biol 84(5): 1672–1677

    Google Scholar 

  • Froman G, Acevedo F, Hjerten S (1980) A molecular sieving method for preparing erythrocyte membranes. Prep Biochem 10(1): 59–67

    Google Scholar 

  • Gupta CM, Alam A, Mathur PN, Dutta GP (1982) A new look at nonparasitized red cells of malaria-infected monkeys. Nature 299: 259–261

    Google Scholar 

  • Hadley TJ, Klotz FW, Miller LH (1986) Invasion of erythrocytes by malaria parasites: a cellular and molecular overview. Ann Rev. Microbiol 40: 451–457

    Google Scholar 

  • Hayashi H, Plishker GA, Vaughan L, Penniston JT (1975) Energy dependent endocytosis in erythrocyte ghosts: IV. Effects of Ca++, Na+, K+ and 5′-adenylylimidodiphosphate. Biochim Biophys Acta 382: 218–229

    Google Scholar 

  • Johnson JG, Epstein N, Shiroishi T, Miller LH (1980) Factors affecting the ability of isolatedPlasmodium knowlesi merozoites to attach and to invade erythrocytes. Parasitology 80: 539–550

    Google Scholar 

  • Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4 DNA packaging events. Mol Biol 80: 575–579

    Google Scholar 

  • Lambros C, Vanderberg JP (1979) Synchronization ofPlasmodium falciparum erythrocytic stages in culture. J Parasitol 65: 418–420

    Google Scholar 

  • Matsumoto Y, Perry G, Scheibel LW, Aikawa M (1987) Role of calmodulin inPlasmodium falciparum. Implications for erythrocyte invasion by the merozoite. Eur J Cell Biol 45: 36–43

    Google Scholar 

  • Patel VP, Fairbanks G (1981) Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol 88: 430–440

    Google Scholar 

  • Perlmann H, Berzins K, Wahlgren M, Carlsson S, Bjorkman A, Patarroyo M, Perlmann P (1984) Antibodies in malarial sera to parasite antigens in the membrane of erythrocytes infected with early asexual stages ofPlasmodium falciparum. J Exp Med 159: 1686–1704

    Google Scholar 

  • Pinder JC, Bray D, Gratzer WB (1977) Control of interaction of spectrin and actin by phosphorylation. Nature 270: 752–754

    Google Scholar 

  • Rangachari K, Dluzewski AR, Wilson RJM, Gratzer WB (1986) Control of malarial invasion by phosphorylation of the host cell membrane cytoskeleton. Nature 324: 364–365

    Google Scholar 

  • Rivadeneira E, Wasserman M, Espinal C (1983) Separation and concentration of schizonts ofPlasmodium falciparum by Percoll gradients. J Protozool 30(2): 367–370

    Google Scholar 

  • Sawyer DW, Sullivan JA, Mandell GL (1985) Intracellular free calcium localization in neutrophils during phagocytosis. Nature 230: 663–666

    Google Scholar 

  • Sheetz MP, Singer SJ (1977) On the mechanisms of ATP-induced shape changes in human erythrocyte membranes: I. The role of the spectrin complex. J Cell Biol 73: 638–646

    Google Scholar 

  • Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 65: 673–675

    Google Scholar 

  • Trager W, Lanners HN (1984) Initial extracellular development in vitro of merozoites ofPlasmodium falciparum. J Protozool 31(4): 562–567

    Google Scholar 

  • Tsuji A, Ohnishi S-I (1986) Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25: 6183–6189

    Google Scholar 

  • Vernot JP, Heidrich HG (1984) Time-course of synthesis, transport and incorporation of a protein identified in purified membranes of host erythrocytes infected with a knob-forming strain ofPlasmodium falciparum. Mol Biochem Parasitol 12: 337–350

    Google Scholar 

  • Vernot JP, Wasserman M (1990)Plasmodium falciparum: increased and multiple invasion during short periods of time. J Protozool 37(1): 47–49

    Google Scholar 

  • Wasserman M, Alarcon C, Mendoza P (1982) Effects of Ca2+ depletion on asexual cell cycle ofPlasmodium falciparum. Am J Trop Med Hyg 31(4): 711–717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserman, M., Vernot, J.P. & Mendoza, P.M. Role of calcium and erythrocyte cytoskeleton phosphorylation in the invasion ofPlasmodium falciparum . Parasitol Res 76, 681–688 (1990). https://doi.org/10.1007/BF00931087

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00931087

Keywords

Navigation