Skip to main content
Log in

Enhancement of [123I]β-CIT binding in the striatum with clomipramine: Is there a serotonin-dopamine interaction?

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Many reports support the concept of serotonergic-dopaminergic interaction in the brain. However, at present, there are few methods to study this relationship in vivo. The purpose of this study was to investigate the effect of serotonin (5-HT) uptake inhibitor, clomipramine, on a dopamine (DA) transporter ligand, [123I]β-CIT (RTI-55), in rat brain. Dose-dependent changes in [123I]β-CIT specific binding induced by clomipramine were studied in the striatum (rich in DA transporter) and the hypothalamus (rich in 5-HT transporter). The changes in the time-activity curves of [123I]β-CIT specific binding after clomipramine injection were also examined in these two regions. Using the cerebellum as the reference region,k 3 andk 4 values with and without clomipramine administration were estimated by a two-compartment kinetic analysis. Clomipramine inhibited [123I]β-CIT specific binding in the hypothalamus, but enhanced its specific binding in the striatum in a dose-dependent manner. Kinetic analysis showed thatk 3 in the striatum was increased by 55%. In conclusion, enhancement of [123I]β-CIT binding in the striatum after clomipramine administration indicated the possibility of 5-HT-DA interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azmitia EC. The serotonergic-producing neurons in the midbrain median and dorsal raphe nuclei. In: Iverson LL, Iverson SD, Snyder SH, eds.Handbook of psychopharmacology, vol. 9. Chemical pathways in the brain. New York: Plenum Press: 1978: 233–314.

    Google Scholar 

  2. Davies J, Tongroach P. Neuropharmacological studies on the nigro-striatal and raphe-striatal system in the rat.Eur J Pharmacol 1978; 51: 91–100.

    PubMed  Google Scholar 

  3. Ennis E, Kemp JD, Cox B. Characterization of inhibitory 5-hydroxytryptamine receptors that modulate dopamine release in the striatum.J Neurochem 1981; 36: 1515–1520.

    PubMed  Google Scholar 

  4. Hetey L, Kurdin VS, Shemanow AY Presynaptic dopamine and serotonin receptors modulating tyrosine hydroxylase activity in synaptosomes of nucleus accumbens of rats.Eur J Pharmacol 1985; 113: 1–10.

    PubMed  Google Scholar 

  5. Besson MJ, Cheramy A, Feltz P, Clowinshi J. Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat.Proc Natl Acad Sci USA 1969; 62: 741–748.

    PubMed  Google Scholar 

  6. Meltzer HY. Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia.Psychopharmacology 1989; 99: S18-S27.

    PubMed  Google Scholar 

  7. Kahn RS, Davidson M, Knott P, Stern RG, Apter S, Davis KL. Effect of neuroleptic medication on cerebrospinal fluid monoamine metabolite concentrations in schizophrenia, serotonin dopamine interaction as a target for treatment.Arch Gen Psychiatry 1993; 50: 599–605.

    PubMed  Google Scholar 

  8. Brodie MS, Trifunovic FD, Shefner SA. Serotonin potentiates ethanol-induced excitation of ventral tegmental area neurons in brain slices from three different rat strains.J Pharmacol Exp Ther 1995; 273: 1139–1146.

    PubMed  Google Scholar 

  9. Mcdougle CJ, Goodman WK, Price LH. The pharmacotherapy of obsessive-compulsive disorder.Pharmacopsychiatry 1993; 26: 24–29.

    PubMed  Google Scholar 

  10. Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT. Binding kinetics in the human brain.J Neural Transm Gen Sect 1993; 94: 137–146.

    PubMed  Google Scholar 

  11. Laruelle M, Baldwin RM, Malison RT, Zea PY, Zoghbi SS, Al-Tikriti M, Sybirska EH, Zimmermann RC, Wisniewski G, Neumeyer JL, Milius RA, Wang S, Smith EO, Roth RH, Charney DS, Hoffer PB, Innis RB. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT: pharmacological characterization of brain uptake in nonhuman primates.Synapse 1993; 13: 295–309.

    PubMed  Google Scholar 

  12. Kuikka JT, Tiihonen J, Bergstrom KA, Karhu J, Hartikainen P, Viinamaki H, Lansimies E, Lehtonen J, Hakola P. Imaging of serotonin and dopamine transporters in the living human brain.Eur J Nucl Med 1995; 22: 346–350.

    PubMed  Google Scholar 

  13. Fujita M, Takatoku M, MatobaY, Nishiura M, Kobayashi K, Inoue O, Nishimura T. Differential kinetics of [123I]β-CIT binding to dopamine and serotonin transporters.Eur J Nucl Med 1996; 23: 431–436.

    PubMed  Google Scholar 

  14. Scheffel U, Dannals RF, Cline EJ, Ricaurte GA, Carroll FI, Abraham P, Lewin AH, Kuhar MJ. [123/125I]RTI-55, an in vivo label for the serotonin transporter.Synapse 1992; 11: 134–139.

    PubMed  Google Scholar 

  15. Kobayashi K, Inoue O. An increase in the in vivo binding of [3H]SCH 23390 induced by MK-801 in the mouse striatum.Neuropharmacology 1993; 32: 341–348.

    PubMed  Google Scholar 

  16. Mintum MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography.Ann Neurol 1984; 15: 217–227.

    PubMed  Google Scholar 

  17. Marquardt DW An algorithm for least square estimation of non-linear parameters.J Soc Indust Appl Math 1963; 11: 431–441.

    Google Scholar 

  18. Scheffel U, Kim S, Cline EJ, Kuhar MJ. Occupancy of the serotonin transporter by fluoxetine, paroxetine, and sertraline: in vivo studies with [125I]RTI-55.Synapse 1994; 16: 263–268.

    PubMed  Google Scholar 

  19. Sneddon JM. Blood platelets as a model for monoamine-containing neurons.Prog Neurobiol 1973; 1: 151–187.

    PubMed  Google Scholar 

  20. Stahl SM, Meltzer HY. A kinetic and pharmacologic analysis of 5-hydroxytryptamine transport by human platelet storage granules: comparison with central serotonergic neurons.J Pharmacol Exp Ther 1978; 205: 118–132

    PubMed  Google Scholar 

  21. Sindrup SH, Gram LF, Skjold T, Grodum E, Brosen K, Beck-Nielsen H. Clomipramine vs desipramine vs placebo in the treatment of diabetic neuropathy symptoms. A double-blind cross-over study.Br J Clin Pharmacol 1990; 30: 683–691.

    PubMed  Google Scholar 

  22. Fujita K, Kobayashi A, Suzuki S, Nakazawa K. Changes of serotonin and catecholamines are related to pharmacokinetic alterations of clomipramine in rat brain.Eur J Pharmacol 1991; 204: 227–233.

    PubMed  Google Scholar 

  23. Chen HT, Clark M, Goldman D. Quantitative autoradiography of3H-paroxetine binding sites in rat brain.J Pharmacol Toxicol Methods 1992; 27: 209–216.

    PubMed  Google Scholar 

  24. Fujita M, Shimada S, Fukuchi K, Tohyama M, Nishimura T. Distribution of cocaine recognition sites in rat brain: in vitro and ex vivo autoradiography with [125I]RTI-55.J Chem Neuroanat 1994; 7: 13–23.

    PubMed  Google Scholar 

  25. Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T, Tateno Y. Age-related changes in human D1 dopamine receptors measured by positron emission tomography.Psychopharmacology 1991; 103: 41–45.

    PubMed  Google Scholar 

  26. Wong DF, Gjedde A, Wagner HN Jr. Quantification of neuro-receptors in the living human brain. 1. Irreversible binding of ligands.J Cereb Blood Flow Metab 1986; 6: 137–146.

    PubMed  Google Scholar 

  27. Laruelle M, Wallace E, Seibly JP, Baldwin RM, Zea PY, Zoghbi SS, Neumeyer JL, Charney DS, Hoffer PB, Innis RB. Graphical, kinetic, and equilibrium analyses of in vivo [123I]β-CIT binding to dopamine transporters in healthy human subjects.J Cereb Blood Flow Metab 1994; 14: 982–994.

    PubMed  Google Scholar 

  28. Frost JJ, Douglass KH, Mayberg HS, Dannals RF, Links JM, Wilson AA, Ravert HT, Crozier WC, Wagner HN Jr. Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography.J Cereb Blood Flow Metab 1989; 9: 398–409.

    PubMed  Google Scholar 

  29. Inoue O, Kobayashi K, Sakiyama Y, Suzuki T. The effect of benzodiazepines on the binding of [3H]SCH 23390 in vivo.Neuropharmacology 1992; 31: 115–121.

    PubMed  Google Scholar 

  30. Buchweitz E, Roffman M, Weiss HR. Immediate vs. long-term desmethylimipramine or chlorimipramine: effects on regional cerebral blood flow.Eur J Pharmacol 1984; 106: 19–26.

    PubMed  Google Scholar 

  31. Suhara T, Inoue O, Kobayashi K. Effect of desipramine on dopamine receptor binding in vivo.Life Sci 1990; 47: 2119–2126.

    PubMed  Google Scholar 

  32. Giros B, Caron MG. Molecular characterization of the dopamine transporter.Trends Pharmacol Sci 1993; 14: 43–49.

    PubMed  Google Scholar 

  33. Kitayama S, Dohi T, Uhl GR. Phorbol esters alter functions of the expressed dopamine transporter.Eur J Pharmacol 1994; 268: 115–119.

    PubMed  Google Scholar 

  34. Arya DK. Extrapyramidal symptoms with selective serotonin reuptake inhibitors.Br J Psychiatry 1994; 165: 728–733.

    PubMed  Google Scholar 

  35. Dewey SL, Smith GS, Logan J, Brodie JD, Yu DW, Ferrieri RA, King PT, MacGregor RR, Martin TP, Wolf AP, Volkow ND, Fowler JS, Meller E. GABAergic inhibition of endogenous dopamine release measured in vivo with11C-raclopride and positron emission tomography.J Neurosci 1992; 12: 3773–3780.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, M., Takatoku, K., Matoba, Y. et al. Enhancement of [123I]β-CIT binding in the striatum with clomipramine: Is there a serotonin-dopamine interaction?. Eur J Nucl Med 24, 403–408 (1997). https://doi.org/10.1007/BF00881812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00881812

Key words

Navigation