Skip to main content
Log in

Strontium in rivers of the Baltic Basin

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The rivers in the Baltic Basin drain a mixture of bedrocks ranging from Mesozoic-Paleozoic sediments in the south to Proterozoic-Archean intrusives in the north. The rivers in the sedimentary basin in the south have high concentrations of Sr, in the interval 100–500 µg l−1 while the87Sr/86Sr ratio is close to that of seawater, i.e. 0.71. The northern rivers in the Precambrian shield area on the other hand have low Sr concentrations of 15–50 µg l−1 with high87Sr/86Sr ratios of about to 0.73 (0.721–0.745). The riverine input of dissolved Sr to the brackish Baltic Sea approaches 60 tons year−1, with a weighted mean concentration approaching 130 µg l−1 and a weighted mean87Sr/86Sr ratio close to 0.712. Although the sedimentary area in the south supplies only about 43% of the total river discharge, it gives about 88% of the total Sr input. Because of this and the strong regional riverine variation in87Sr/86Sr ratio, Sr and its isotopes seem to be a convenient tool to unveil mixing relations of water masses in the northern Baltic Sea, provided high resolution analyses are applied. For an overall characterization of water mixing in the Baltic Sea, the Nd system will be superior to that of Sr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg, G., and F. E. Wickman, 1987. Variations of87Sr/86Sr in water from streams discharging into the Bothnian Bay, Baltic Sea. Nord. Hydrol. 18:21–32.

    Google Scholar 

  • Åberg, G., G. Jacks and P. J. Hamilton, 1989. Weathering rates and87Sr/86Sr ratios: an isotopic approach. J. Hydrol. 109:65–78.

    Google Scholar 

  • Åberg, G., G. Jacks, T. Wickman and P. J. Hamilton, 1990. Strontium isotopes in trees as an indicator for calcium availability. Catena 17:1–11.

    Google Scholar 

  • Andersson, P., R. Löfvendahl and G. Åberg, 1990. Major element chemistry, 2H, 18O and87Sr/86Sr in a snow profile across central Scandinavia. In press, Atmos. Environ. 24A.

  • Bastin, R., and G. Faure, 1970. Seasonal variation of the solute content and the87Sr/86Sr ratio of the Olentangy and Scioto Rivers at Columbus, Ohio. Ohio J. Sci. 70:170–179.

    Google Scholar 

  • Baumgartner, A., and E. Reichel, 1976. The world water balance. Elsevier, Amsterdam, 179 pp.

    Google Scholar 

  • Biscaye, P. E., R. Chesselet and J. M. Prospero, 1974. Rb/Sr,87Sr/86Sr isotope system as an index of provenance of continental dusts in open Atlantic Ocean. J. Recherch. Atmos. 8:819–829.

    Google Scholar 

  • Boström, K., B. Boström and P. Andersson, 1989. Natural and Anthropogenic Components in Bulk Precipitation at Blidö (Archipelago of Stockholm). Water Resour. Res. 25:1291–1301.

    Google Scholar 

  • Brandt, M., 1982–87. Sediment transport in Swedish rivers 1980–83 (In Swedish). Mimeographed Reports. Swed. Meteorol. Hydrol. Inst. (SMHI). Norrköping.

    Google Scholar 

  • Burman, J.-O., B. Boström and K. Boström, 1977. Geochemical analyses by plasma spectroscopy. Geol. Fören. Stockh. Förh. 99:102–110.

    Google Scholar 

  • DePaolo, D. J., and B. L. Ingram, 1985. High-resolution stratigraphy with strontium isotopes. Science 227:938–941.

    Google Scholar 

  • Ehlin, U., 1981. Hydrology of the Baltic Sea. In: A. Voipio (ed.), The Baltic Sea, Elsevier Oceanography Series 30, Amsterdam, pp. 123–134.

  • Faure, G., 1986. Principles of Isotope Geology, 2nd ed. John Wiley and Sons, N. Y., 589 pp.

    Google Scholar 

  • Faure, G., J. H. Crocket and P. M. Hurley, 1967. Some aspects of the geochemistry of strontium and calcium in the Hudson Bay and the Great Lakes. Geochim. Cosmochim. Acta 31:451–461.

    Google Scholar 

  • Fonselius, S., 1984. Långtidsvariationer ì salthalten ì Östersjöns djupvatten. Medd. Sven. Havsforskningsfören. 19:131–146.

    Google Scholar 

  • Förstner, U., and G.T.W. Wittman, 1981. Metal pollution in the Aquatic Environment. 2nd ed. Springer Verlag, Berlin, 486 pp.

    Google Scholar 

  • Goldstein, S. J., and S. R. Jacobsen, 1987. The Nd and Sr isotopic systematics of river-water dissolved material: implications for the sources of Nd and Sr in seawater. Chem. Geol./Isot. Geosci. 66:245–272.

    Google Scholar 

  • Grashoff, K., and A. Voipio, 1981. Chemical Oceanography. In: A. Voipio (ed.), The Baltic Sea, Elsevier Oceanography Series 30, Amsterdam, pp. 183–218.

  • Graustein, W. C., 1989.87Sr/86Sr ratio measure the sources and flow of strontium in terrestrial ecosystems. In: P. W. Rundel, J. R. Ehleringer and K. A. Nagy (eds.), Stable isotopes in ecological research 68, Ecological Studies, Springer, N. Y., pp. 491–512.

    Google Scholar 

  • Heier, K. S., and G. K. Billings, 1978. Rubidium abundance in rock-forming minerals. In: K. H. Wedepohl (ed.), Handbook of Geochemistry II/4, Springer Verlag, Berlin, pp. 37-D, 1-4.

    Google Scholar 

  • Jacks, G., G. Åberg and P. J. Hamilton, 1989. Calcium budgets for catchments as interpreted by strontium isotopes. Nord. Hydrol. 20:85–96.

    Google Scholar 

  • Ku, T.-L., K. G. Knauss and G. G. Mathieu, 1977. Uranium in open ocean: concentration and isotopic composition. Deep-Sea Res. 24:1005–1017.

    Google Scholar 

  • Löfvendahl, R., 1987. Dissolved uranium in the Baltic Sea. Mar. Chem. 21:213–227.

    Google Scholar 

  • Löfvendahl, R., 1990. Changes in the flux of some major dissolved components in Swedish rivers during the present century. Ambio 19:210–219.

    Google Scholar 

  • Löfvendahl, R. Manuscript. Dissolved and particulate uranium, particulate thorium and their nuclides in rivers discharging into the Baltic Sea.

  • Martin, J.-M., and M. Whitfield, 1983. The significance of the river input of chemical elements to the ocean. In: C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg (eds.), Trace metals in sea water. NATO Conf. Series IV: Marine Sciences 9, Plenum Press, pp. 265–296.

  • Meybeck, M., 1988. How to establish and use world budgets of riverine material. In: A. Lerman and M. Meybeck (eds.), Physical and Chemical weathering in Geochemical Cycles. NATO ASI series: Series C: Mathematical and Physical Sciences 251:247–272.

    Google Scholar 

  • Mikulski, Z., 1970. Inflow of river water to the Baltic Sea in the period 1951–60. Nord. Hydrol. 4:216–227.

    Google Scholar 

  • Paces, T., 1982. Natural and anthropogenic flux of major elements from central Europe. Ambio 11:206–208.

    Google Scholar 

  • Pacyna, J., 1985. Atmospheric trace elements from natural and anthropogenic sources. In: J. O. Nriagu and C. I. Davidson (eds.), Toxic metals in the atmosphere 17. Advances in environmental sciences and technology, John Wiley and Sons, N. Y., pp. 33–52.

    Google Scholar 

  • Palmer, M. R., and J. M. Edmond, 1989. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 92:11–26.

    Google Scholar 

  • Piepgras, D.J., and G. J. Wasserburg, 1980. Neodymium isotopic variations in seawater. Earth Planet. Sci. Lett. 50:128–138.

    Google Scholar 

  • Skakalsky, B. G., 1984. Study of anthropogenic influence on water quality in some rivers of the Baltic Sea Basin. In: E. Eriksson (ed.), Hydrochemical balances of freshwater systems, IAHS publ. 150:295–302.

    Google Scholar 

  • Smalley, P. C., R. Blomqvist and A. Råheim, 1988. Sr isotope evidence for discrete saline components in stratified ground waters from crystalline bedrock, Outukumpu, Finland, Geology 16:354–357.

    Google Scholar 

  • Straughan, I. R., A. A. Elseewi, A. L. Page, I. R. Kaplan, R. W. Hurst and T. E. Davies, 1981. Fly ash-derived strontium as an index to monitor deposition of coal-fired power plants. Science 212:1267–1269.

    Google Scholar 

  • Stueber, A. M., 1978. Strontium. Abundance in rock-forming minerals. In: K. H. Wedepohl (ed.), Handbook of Geochemistry II/4, Springer Verlag, Berlin, pp. 38-D, 1-17.

    Google Scholar 

  • Stueber, A. M., A. D. Baldwin, J. B. Curtis jr., P. Pushkar and J. D. Steele, 1975. Geochemistry of strontium in the Scioto River drainage basin. Ohio. Bull. Geol. Soc. Am. 86:892–896.

    Google Scholar 

  • Veizer, J., 1989. Strontium isotopes in seawater through time. Annual Rev. Earth Planet. Sci. 17:141–167.

    Google Scholar 

  • Wadleigh, M. A., J. Veizer and C. Brooks, 1985. Strontium and its isotopes in Canadian rivers: Fluxes and global implications. Geochim. Cosmochim. Acta 49:1727–1736.

    Google Scholar 

  • Wickman, F. E., and G. Åberg, 1987. Variations in the87Sr/86Sr ratio in lake waters from central Sweden. Nord. Hydrol. 18:33–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löfvendahl, R., Åberg, G. & Hamilton, P.J. Strontium in rivers of the Baltic Basin. Aquatic Science 52, 315–329 (1990). https://doi.org/10.1007/BF00879760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879760

Key words

Navigation