Skip to main content
Log in

Possibilities and limitations of lake restoration: Conclusions for Lake Lugano

  • Modelling and restoration of Lake Lugano
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

In most lakes eutrophication is linked to an excessive input of phosphorus. Lake restoration by reduction of P-input (external measure) has led to a considerable drop of the P-concentration in all major Swiss lakes as well as in many other lakes. Internal restoration measures such as artificial mixing, drainage of hypolimnetic water, flushing, aeration, biomanipulation and others serve to improve and accelerate the response of a lake to external measures. For the case of Lago di Lugano, a simple two-box model is employed to demonstrate that a reduction of the P-input to about 25% of the present values is necessary to reach the “P-criterion” (P-concentration below 30 µg/l). Internal measures could possibly accelerate the extremely slow response of the northern basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambühl, H., 1982. Eutrophierungskontrollmassnahmen in Schweizer Mittellandseen. Z. Wasser-Abwasserforsch. 15:113–120.

    Google Scholar 

  • Benndorf, J., 1987. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz. Z. Hydrol. 49:237–248.

    Google Scholar 

  • Gächter, R. and D. M. Imboden, 1985. Lake restoration. In: W. Stumm (ed.), “Chemical processes in lakes”, Wiley-Interscience, New York, p. 363–388.

    Google Scholar 

  • Gächter, R., A. Mares, E. Grieder, A. Zwyssig and P. Höhener, 1989. Auswirkungen der Belüftung und Sauerstoffbegasung auf den P-Haushalt des Sempachersees. Wasser, Energie, Luft 81:335–341.

    Google Scholar 

  • Imboden, D. M., 1987a. Restaurierung von Seen: Eine multidisziplinäre, ökologische Aufgabe. Gas-Wasser-Abwasser 67:427–432.

    Google Scholar 

  • Imboden, D. M., 1987b. Restoration of a Swiss lake by internal measures: can models explain reality? Proc. Internat. Congress on Lakes Pollution and Recovery, Europ. Water Poll. Control. Assoc., Rome, April 1985, p. 29–40.

    Google Scholar 

  • Müller, R., 1992. Trophic state and its implication for natural reproduction of salmonid fish. Hydrobiologia/Dev. Hydrobiol., in press.

  • Rast, W., R. A. Jones and G. F. Lee, 1983. Predictive capability of U.S. OECD phosphorus loading — eutrophication response models. Journal WCPF 55:990–1003.

    Google Scholar 

  • Ripl, W., 1976. Biochemical oxidation of polluted lake sediment with nitrate. A new lake restoration method. Ambio 5:132–135.

    Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading. Academia Verlag Richarz, Sankt Augustin, 497 pp.

  • Vollenweider, R., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. 1st. Ital. Idrobiol. 33:53–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imboden, D.M. Possibilities and limitations of lake restoration: Conclusions for Lake Lugano. Aquatic Science 54, 381–390 (1992). https://doi.org/10.1007/BF00878149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878149

Key words

Navigation