Skip to main content
Log in

Theory of internal gravity wave saturation

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Gravity wave saturation is an important process affecting the transport and deposition of momentum, heat, and constituents in the earth's atmosphere. This paper informally discusses several saturation mechanisms and their effects, including convection, Kelvin-Helmholtz instability, vortical mode instability, parametric subharmonic instability, and mean flow interaction. Convective saturation is emphasized. The parameterization of convective adjustment is discussed and a few remarks are made concerning the effects of turbulence localization on the convective saturation process. Several outstanding problems in saturation theory are identified that could be addressed with observational, numerical, and laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G. andM. E. McIntyre (1976),Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration, J. Atmos. Sci.33, 2031–2048.

    Google Scholar 

  • Barat, J. (1983),The fine structure of the stratospheric flow revealed by differential sounding, J. Geophys Res.88, 5219–5228.

    Google Scholar 

  • Benney, D. J., andA. C. Newell (1967),The propagation of nonlinear wave envelopes, J. Math. Phys.46, 133–139.

    Google Scholar 

  • Broutman, D. (1984),The focusing of short internal waves by an inertial wave, Geophys. Astrophys. Fluid Dyn.30, 199–225.

    Google Scholar 

  • Chao, W., andM. R. Schoeberl (1984),A note on the linear approximation of gravity wave saturation in the mesosphere, J. Atmos. Sci.41, 1893.

    Google Scholar 

  • Coy, L., (1983),A slowly varying model of gravity wave, mean-flow interaction in a compressible atmosphere, Ph.D. Thesis, University of Washington.

  • Coy, L. andD. C. Fritts (1988),Gravity wave heat fluxes: A Lagrangian approach, J. Atmos. Sci.45, 1770–1780.

    Google Scholar 

  • Delisi, D. P., andDunkerton, T. J. (1989),Laboratory observations of gravity wave critical-layer flows, Pure Appl. Geophys.130 (2/3), 445–462.

    Google Scholar 

  • Dong, B., andK. C. Yeh (1988),Resonant and nonresonant wave-wave interactions in an isothermal atmosphere, J. Geophys. Res.93, 3729–3744.

    Google Scholar 

  • Dunkerton, T. J. (1982),Wave transience in a compressible atmosphere, Part 3: The saturation of internal gravity waves in the mesosphere. J. Atmos. Sci.39, 1042–1051.

    Google Scholar 

  • Dunkerton, T. J. (1984),Inertia-gravity waves in the stratosphere, J. Atmos. Sci.41, 3396–3404.

    Google Scholar 

  • Dunkerton, T. J. (1987),Effect of nonlinear instability on gravity wave momentum transport, J. Atmos. Sci.44, 3188–3209.

    Google Scholar 

  • Dunkerton, T. J., andN. Butchart (1984),Propagation and selective transmission of internal gravity waves in a sudden warming, J. Atmos. Sci.41, 1443–1460.

    Google Scholar 

  • Dunkerton, T. J., andD. C. Fritts (1984),The transient gravity wave critical layer, Part 1: Convective adjustment and the mean zonal acceleration, J. Atmos. Sci.41, 992–1007.

    Google Scholar 

  • Eliassen, A., andE. Palm (1960),On the transfer of energy in stationary mountain waves, Geophys. Publ.22, No. 3.

  • Flatte, S. M., F. S. Henyey, andJ. A. Wright (1985),Eikonal calculations of short-wavelength internal-wave spectra, J. Geophys. Res.90, 7265–7272.

    Google Scholar 

  • Frederiksen, J. S., andR. C. Bell (1984),Energy and entropy evolution of interacting internal gravity waves and turbulence, Geophys. Astrophys. Fluid Dynamics28, 171–203.

    Google Scholar 

  • Fritts, D. C. (1984),Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys. and Space Phys.22, 275–308.

    Google Scholar 

  • Fritts, D. C., andT. J. Dunkerton (1984),A quasi-linear study of gravity wave saturation and self-acceleration, J. Atmos. Sci.41, 3272–3289.

    Google Scholar 

  • Fritts, D. C., andT. J. Dunkerton (1985),Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci.42, 549–556.

    Google Scholar 

  • Fritts, D. C., andP. K. Rastogi (1985),Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci.20, 1247–1277.

    Google Scholar 

  • Gage, K. S., andG. D. Nastrom (1986),Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP, J. Atmos. Sci.43, 729–740.

    Google Scholar 

  • Hasselman, K. (1967),A criterion for nonlinear wave stability, J. Fluid Mech.30, 737–739.

    Google Scholar 

  • Hines, C. O. (1988),The generation of turbulence by atmospheric gravity waves, J. Atmos. Sci.45, 1269–1278.

    Google Scholar 

  • Holton, J. R. (1975),The Dynamic Meteorology of the Stratosphere and Mesosphere (Amer. Meteor. Soc.) 319 pp.

  • Ibrahim, M. M. (1987),Effect of nonlinearity on atmospheric gravity waves, J. Atmos. Sci.44, 706–720.

    Google Scholar 

  • Kato, H., andO. M. Phillips (1969),On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech.37, 643–655.

    Google Scholar 

  • Klaassen, G. P., andW. R. Peltier (1985),The onset of turbulence in finite-amplitude Kelvin-Helmholtz billows, J. Fluid Mech.155, 1.

    Google Scholar 

  • Klostermeyer, J. (1982),On parametric instabilities of finite-amplitude internal gravity waves, J. Fluid Mech.119, 367–377.

    Google Scholar 

  • Koop, C. G., andB. McGee (1986),Measurements of internal gravity waves in a continuously stratified shear flow, J. Fluid Mech.172, 453.

    Google Scholar 

  • Lilly, D. K. (1983),Stratified turbulence and the mesoscale variability of the atmosphere, J. Atmos. Sci.40, 749–761.

    Google Scholar 

  • Lindzen, R. S. (1971),Equatorial planetary waves in shear: Part 1, J. Atmos. Sci.28, 609–622.

    Google Scholar 

  • Lindzen, R. S. (1981),Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res.860, 9707–9714.

    Google Scholar 

  • McComas, C. H., andF. P. Bretherton (1977),Resonant interaction of oceanic internal waves, J. Geophys. Res.82, 1397–1412.

    Google Scholar 

  • McEwan, A. D., andR. M. Robinson (1975),Parametric instability of internal gravity waves, J. Fluid Mech.67, 667–687.

    Google Scholar 

  • Mied, R. P. (1976),The occurence of parametric instabilities in finite-amplitude internal gravity waves, J. Fluid Mech.78, 763–784.

    Google Scholar 

  • Mobbs, S. D. (1987),A numerical investigation of nonlinear internal gravity waves and their influnce on the mean flow, Ann. Geophysicae5, 197–208.

    Google Scholar 

  • Muller, P. G., Holloway, F. Henyey andN. Pomphrey (1986),Nonlinear interactions among internal gravity waves, Rev. Geophys.24, 493–536.

    Google Scholar 

  • Orlanski, I., andK. Bryan (1969),Formulation of the thermocline step structure by large-amplitude internal gravity waves, J. Geophys. Res.74, 6975–6983.

    Google Scholar 

  • Plumb, R. A., andA. D. McEwan (1978),The instability of a forced standing wave in a viscous stratified fluid: A laboratory analog of the quasi-biennial oscillation, J. Atmos. Sci.35, 1827–1839.

    Google Scholar 

  • Riley, J. J. R. W. Metcalfe, andM. A. Weissman (1981),Direct numerical simulations of homogeneous turbulence in density-stratified fluids, inNonlinear Properties of Internal Waves (B. J. West, ed.) (AIP Conference Proceedings, Vol. 76) 352 pp.

  • Schoeberl, M. R. (1988),A model of stationary gravity wave breakdown with convective adjustment, J. Atmos. Sci.45, 980–992.

    Google Scholar 

  • Smith, S. A., D. C. Fritts, andT. E. VanZandt (1987),Evidence for a saturated spectrum of atmospheric gravity waves, J. Atmos. Sci.44, 1404–1410.

    Google Scholar 

  • Thorpe, S. A. (1981),An experimental study of critical layers, J. Fluid Mech.103, 321–344.

    Google Scholar 

  • Turner, J. S.,Buoyancy Effects in Fluids (Cambridge University Press 1979) 368 pp.

  • Weinstock, J. (1982),Nonlinear theory of gravity waves: Momentum deposition, generalized Rayleigh friction, and diffusion, J. Atmos. Sci.39, 1698–1710.

    Google Scholar 

  • Yeh, K. C., andC. H. Liu (1981),The instability of atmospheric gravity waves through wave-wave interactions, J. Geophys. Res.86, 9722–9728.

    Google Scholar 

  • Yeh, K. C., andC. H. Liu (1985),Evolution of atmospheric spectrum by processes of wave-wave interaction, J. Geophys. Res.86, 9722–9728.

    Google Scholar 

  • Yeh, K. C., andC. H. Liu (1985),Evolution of atmospheric spectrum by processes of wave-wave interaction, Radio Sci.20, 1279–1294.

    Google Scholar 

  • Zhu, X., andJ. R. Holton (1987),Mean fields induced by local gravity-wave forcing in the middle atmosphere, J. Atmos. Sci.44, 620–630.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunkerton, T.J. Theory of internal gravity wave saturation. PAGEOPH 130, 373–397 (1989). https://doi.org/10.1007/BF00874465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874465

Key words

Navigation