Skip to main content
Log in

Genetic control of polyketide biosynthesis in the genusStreptomyces

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The genetic control of polyketide metabolite biosynthesis inStreptomyces sp. producing actinorhodin, daunorubicin, erythromycin, spiramycin, tetracenomycin and tylosin is reviewed. Several examples of positively-acting transcriptional regulators of polyketide metabolism are known, including some two-component sensor kinase-response regulator systems. Translational and posttranslational control mechanisms are only briefly mentioned since very little is known about either of these processes. Examples of how enzyme levels and substrate supply affect polyketide metabolism also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

act:

actinorhodin

ACP:

Acyl Carrier Protein

NH4+:

ammonium ion

aphII:

aminoglycoside phosphotransferase gene

CoA:

Coenzyme A

dnr:

daunorubicin

hyg:

hygromycin phosphotransferase gene

PKS:

Polyketide Synthase

vdh:

valine dehydrogenase

tcm:

tetracenomycin

References

  • Adamidis T, Riggle P & Champness W (1990) Mutations in a newStreptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J. Bacteriol. 172: 2962–2969

    PubMed  Google Scholar 

  • Adamidis T & Champness W (1992) Genetic analysis ofabsB, aStreptomyces coelicolor locus involved in global antibiotic regulation. J. Bacteriol. 174: 4622–4628

    PubMed  Google Scholar 

  • Andersen JF & Hutchinson CR (1992) Characterization ofSaccharopolyspora erythraea cytochrome P450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J. Bacteriol. 174: 725–735

    PubMed  Google Scholar 

  • Bibb MJ, Biró S, Motamedi H, Collins JF & Hutchinson CR (1989) Analysis of the nucleotide sequence of theStreptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J. 8: 2727–2736

    PubMed  Google Scholar 

  • Bibb MJ, Janssen GR & Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin-resistance gene (ermE) ofStreptomyces erythreus. Gene 38: E357-E368

    Google Scholar 

  • Birch A, Leiser A & Robinson JA (1993) Cloning, sequencing and expression of the gene encoding methylmalonyl-CoA mutase fromStreptomyces cinnamonensis. J. Bacteriol. 175: 3511–3519

    PubMed  Google Scholar 

  • Bourret RB, Borkovich KA & Simon MI (1991) Signal transduction pathways involving protein phosphorylation in procaryotes. Annu. Rev. Biochem. 60: 401–441

    PubMed  Google Scholar 

  • Branã AF & Demain AL (1988) Nitrogen control of antibiotic biosynthesis in actinomycetes. In: Sanchez-Esquivel S (ED) Nitrogen Source Control of Microbial Processes (pp. 99–119). CRC Press, Boca Raton

    Google Scholar 

  • Burbulys D, Trach KA & Hoch JA (1991) Initiation of sporulation inB. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545–552

    PubMed  Google Scholar 

  • Caballero JL, Malpartida F & Hopwood DA (1991) Transcriptional organization and regulation of an antibiotic export complex in the producingStreptomyces culture. Mol. Gen. Genet. 228: 372–380

    PubMed  Google Scholar 

  • Champness W, Riggle P & Adamidis T (1990) Loci involved in regulation of antibiotic synthesis. J. Cell. Biochem. 14A: 88

    Google Scholar 

  • Champness W, Riggle P, Adamidis T, Kenney B & Aceti D (1993) Genetic elements involved in global antibiotic regulation inStreptomyces coelicolor. In: Hershberger CL, Skatrud P & Hegeman G (Eds) Genetics and molecular biology of industrial microorganisms (pp. 227–234). American Society of Microbiology, Washington, DC

    Google Scholar 

  • Cortes J, Haydock SF, Roberts GA, Bevitt DJ & Leadlay PF (1990) An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase ofSaccharopolyspora erythraea. Nature 348: 176–178

    PubMed  Google Scholar 

  • Decker H & Hutchinson CR (1993) Transcriptional analysis of theStreptomyces glaucescens tetracenomycin C biosynthetic gene cluster. J. Bacteriol. 175: 3887–3892

    PubMed  Google Scholar 

  • Decker H, Motamedi H & Hutchinson CR (1993) The nucleotide sequence and heterologous expression oftcmG andtcmP, biosynthetic genes for tetracenomycin C inStreptomyces glaucescens. J. Bacteriol. 175: 3876–3886

    PubMed  Google Scholar 

  • Decker H, Summers RG & Hutchinson CR (1993) Overproduction of the acyl carrier protein component of a Type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates inStreptomyces glaucescens. J. Antibiotics 47: 54–63

    Google Scholar 

  • Demain AL & Martin JF (1980) Control of antibiotic biosynthesis. Microbiol. Revs. 44: 230–251

    Google Scholar 

  • Donadio S, Stassi D, McAlpine JB, Staver MJ, Sheldon PJ, Jackson M, Swanson SJ, Wendt-Pienkowski E, Wang YG, Jarvis B, Hutchinson CR & Katz L (1993) Recent developments in the genetics of erythromycin formation. In: Hershberger CL, Skatrud P & Hegeman G (Eds) Genetics and molecular biology of industrial microorganisms (pp. 257–266). American Society of Microbiology, Washington, DC

    Google Scholar 

  • Donadio S, Staver MJ, McAlpine JB, Swanson SJ & Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675–679

    PubMed  Google Scholar 

  • Donadio S & Katz L (1992) Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation inSaccharopolyspora erythraea. Gene 111: 51–60

    PubMed  Google Scholar 

  • Doull JL & Vining LC (1990) Nutritional control of actinorhodin production byStreptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate. Appl. Microbiol. Biotechnol. 32: 449–454

    PubMed  Google Scholar 

  • Doull JL & Vining LC (1989) Culture conditions promoting dispersed growth and biphasic production of actinorhodin in shaken cultures ofStreptomyces coelicolor A3(2). FEMS Microbiol. Lett. 65: 265–268

    Google Scholar 

  • Fernandez-Moreno MA, Caballero JL, Hopwood DA & Malpartida F (1991) Theact cluster contains regulatory and antibiotic export genes, direct targets for translational control by thebldA tRNA gene of Streptomyces. Cell 66: 769–780

    PubMed  Google Scholar 

  • Fernandez-Moreno MA, Martinez E, Boto L, Hopwood DA & Malpartida F (1992) Nucleotide sequence and deduced functions of a set of cotranscribed genes ofStreptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J. Biol. Chem. 267: 19278–19290

    PubMed  Google Scholar 

  • Fernandez-Moreno MA, Martin-Triana AJ, Martinez E, Nieme J, Kieser HM, Hopwood DA & Malpartida F (1992)abaA, a new pleiotropic regulatory locus for antibiotic production inStreptomyces coelicolor. J. Bacteriol. 174: 2958–2967

    PubMed  Google Scholar 

  • Geistlich M, Losick R, Turner JA & Rao RN (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene inStreptomyces ambofaciens. Mol. Microbiol. 6: 2019–2029

    PubMed  Google Scholar 

  • Gramajo HC, Takano E & Bibb MJ (1993) Stationary-phase production of the antibiotic actinorhodin inStreptomyces coelicolor A3(2) is transcriptionally regulated. Mol. Microbiol. 7: 837–845

    PubMed  Google Scholar 

  • Guilfoile PG & Hutchinson CR (1992a) Sequence and transcriptional analysis of theStreptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J. Bacteriol. 174: 3651–3658

    PubMed  Google Scholar 

  • Guilfoile PG & Hutchinson CR (1992b) TheStreptomyces glaucescens TcmR protein represses transcription of the divergently orientedtcmR andtcmA genes by binding to an intergenic operator region. J. Bacteriol. 174: 3659–3666

    PubMed  Google Scholar 

  • Hallam SE, Malpartida F & Hopwood DA (1988) Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis inStreptomyces coelicolor. Gene 74: 305–320

    PubMed  Google Scholar 

  • Ho CC, Nissom PM & Krishna G (1993) Stimulation of adriamycin biosynthesis inStreptomyces peucetius var.caesius by multiple copies ofafsR, a global regulatory gene ofStreptomyces coelicolor. Abstracts of the Fourth Scientific Meeting of the Malaysian Society for Molecular Biology and Cellular Biology (pp. 40–41), May, 1993

  • Hobbs G, Frazer CM, Gardner DCJ, Flett F & Oliver SG (1990) Pigmented antibiotic production byStreptomyces coelicolor A3(2): kinetics and the influence of nutrients. J. Gen. Microbiol. 136: 2291–2296

    Google Scholar 

  • Hobbs G, Obanye AIC, Petty J, Mason JC, Barratt E, Gardner DCJ, Flett F, Smith CP, Broda P & Oliver SG (1992) An integrated approach to studying regulation of production of the antibiotic methylenomycin byStreptomyces coelicolor A3(2). J. Bacteriol. 174: 1487–1494

    PubMed  Google Scholar 

  • Hodgson DA (1993) Carbon metabolism & Nitrogen metabolite degradation. In: Wellington EMH & Hodgson DA (Eds) Handbook of Biotechnology: Streptomyces (Chapter 3 & 6, in press). Plenum Press, London

    Google Scholar 

  • Hong SK, Kito M, Beppu T & Horinouchi S (1991) Phosphorylation of the AfsR product, a global regulatory protein for secondary metabolite formation inStreptomyces coelicolor A3(2). J. Bacteriol. 173: 2311–2318

    PubMed  Google Scholar 

  • Hopwood DA & Sherman DH (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu. Rev. Genet. 24: 37–66

    PubMed  Google Scholar 

  • Horinouchi H, Malpartida F, Hopwood DA & Beppu T (1989)afsB stimulates transcription of the actinorhodin biosynthetic pathway inStreptomyces coelicolor A3(2) andStreptomyces lividans. Mol. Gen. Genet. 215: 355–357

    PubMed  Google Scholar 

  • Horinouchi S, Kito M, Nishiyama M, Furuya K, Hong SK, Miyake K & Beppu T (1990) Primary structure of AfsR, a global regulatory protein for secondary metabolite formation inStreptomyces coelicolor A3(2). Gene 95: 49–56

    PubMed  Google Scholar 

  • Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA & Beppu T (1992) A putative two-component regulatory system involved in secondary metabolism inStreptomyces spp. J. Bacteriol. 174: 7585–7594

    PubMed  Google Scholar 

  • Katz L & Donadio S (1993) Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47: 875–912

    PubMed  Google Scholar 

  • Khosla C, McDaniel R, Ebert-Khosia S, Torres R, Sherman DH, Bibb MJ & Hopwood DA (1993) Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins. J. Bacteriol. 175: 2197–2204

    PubMed  Google Scholar 

  • Lebrihi A, Lamsaif D, Lefebvre G & Germain P (1992) Effect of ammonium ions on spiramycin biosynthesis inStreptomyces ambofaciens. Appl. Microbiol. Biotechnol. 37: 382–387

    PubMed  Google Scholar 

  • Lee SH & Lee KJ (1991) Relationship between threonine dehydratase and biosynthesis tylosin inStreptomyces fradiae. J. Gen. Microbiol. 137: 2547–2553

    PubMed  Google Scholar 

  • Leskiw BK, Mah R, Lawlor EJ & Chater KF (1993) Accumulation ofbldA-specified tRNA is temporally regulated inStreptomyces coelicolor A3(2). J. Bacteriol. 175: 1995–2005

    PubMed  Google Scholar 

  • Leskiw BK, Bibb MJ & Chater KF (1991) The use of a rare codon specifically during development? Molec. Microbiol. 5: 2861–2867

    Google Scholar 

  • Marahiel MA, Nakano MM & Zuber P (1993) Regulation of peptide antibiotic production inBacillus. Mol. Microbiol. 7: 631–636

    PubMed  Google Scholar 

  • Matsumoto A, Hong SK, Horinouchi S & Beppu T (1993) Phosphorylation by a protein serine/threonine/tyrosine kinase of the AfsR protein involved in a secondary metabolism inStreptomyces spp. Cell, in press

  • Narva KE & Keitelson JS (1990) Nucleotide sequence and transcriptional analysis of theredD locus ofStreptomyces coelicolor A3(2). J. Bacteriol. 172: 326–333

    PubMed  Google Scholar 

  • Neidhardt FC, Ingraham JL & Schaechter M (1990) Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Omura S, Tanaka Y, Mamada H & Masuma R (1984a) Effect of ammonium ion, inorganic phosphate and amino acids on the biosynthesis of protylonolide, a precursor of tylosin aglycone. J. Antibiotics 37: 494–502

    Google Scholar 

  • Omura S, Tsuzuki K, Tanaka Y, Sakakibara H, Mamada H & Masuma R (1983) Ammonium ion suppresses the biosynthesis of tylosin aglycone by interference with valine catabolism inStreptomyces fradiae. J. Antibiotics 36: 1792–1794

    Google Scholar 

  • Omura S, Taki A, Matsuda K & Tanaka Y (1984b) Ammonium ions suppress the amino acid metabolism involved in the biosynthesis of protylonolide in a mutant ofStreptomyces fradiae. J. Antibiotics 37: 1362–1369

    Google Scholar 

  • O'Hagen D (1991) The Polyketide Metabolites. Ellis Horwood, Chichester, UK

    Google Scholar 

  • Parro V, Hopwood DA, Malpartida F & Mellado RP (1991) Transcription of genes involved in the earliest steps of actinorhodin biosynthesis inStreptomyces coelicolor. Nucl. Acids Res. 19: 2623–2627

    PubMed  Google Scholar 

  • Paulus TJ, Tuan JS, Luebke VE, Maine GT, DeWitt JP & Katz L (1990) Mutation and cloning oferyG, the structural gene for erythromycinO-methyltransferase fromSaccharopolyspora erythraea, and expression oferyG inEscherichia coli. J. Bacteriol. 172: 2541–2546

    PubMed  Google Scholar 

  • Reynolds KA, O'Hagen D, Gani D & Robinson JA (1988) Butyrate metabolism in Streptomycetes. Characterization of an intramolecular vicinal interchange rearrangement linking isobutyrate and butyrate inStreptomyces cinnamonensis. J. Chem. Soc. Perkin Trans. I. 1988: 3195–3208

    Google Scholar 

  • Romero NM, Parro V, Malpartida F & Mellado RP (1992) Heterologous activation of the actinorhodin biosynthetic pathway inStreptomyces lividans. Nucl. Acids Res. 20: 2767–2772

    PubMed  Google Scholar 

  • Rudd BAM & Hopwood DA (1979) Genetics of actinorhodin biosynthesis byStreptomyces coelicolor A3(2). J. Gen. Microbiol. 114: 35–43

    PubMed  Google Scholar 

  • Shen B, Summers RG, Gramajo H, Bibb MJ & Hutchinson CR (1992) Purification and characterization of the acyl carrier protein of theStreptomyces glaucescens tetracenomycin C polyketide synthase. J. Bacteriol. 174: 3818–3821

    PubMed  Google Scholar 

  • Shen B & Hutchinson CR (1993a) Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C inStreptomyces glaucescens. Biochemistry 32: 6656–6663

    PubMed  Google Scholar 

  • Shen B & Hutchinson CR (1993b) Tetracenomycin F2 cyclase: Intramolecular aldol condensation in the biosynthesis of tetracenomycin C inStreptomyces glaucescens. Biochemistry 32: 11149–11154

    PubMed  Google Scholar 

  • Sherman MM, Yue S & Hutchinson CR (1986) Metabolic interrelationships of carboxylic acid precursors and polyether antibiotics. J. Antibiotics 39: 1135–1143

    Google Scholar 

  • Stassi D, Donadio S, Staver MJ & Katz L (1993) Identification of aSaccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. J. Bacteriol. 175: 182–189

    PubMed  Google Scholar 

  • Stein D & Cohen SN (1989) A cloned regulatory gene ofStreptomyces lividans can suppress the pigment deficiency phenotype of different developmental mutants. J. Bacteriol. 171: 2258–2261

    PubMed  Google Scholar 

  • Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450–490

    PubMed  Google Scholar 

  • Stragier P & Losick R (1990) Cascades of sigma factors revisited. Mol. Microbiol. 4: 1801–1806

    PubMed  Google Scholar 

  • Stutzman-Engwall KJ, Otten SL & Hutchinson CR (1992) Regulation of secondary metabolism inStreptomyces spp. and overproduction of daunorubicin inStreptomyces peucetius. J. Bacteriol. 174: 144–154

    PubMed  Google Scholar 

  • Summers RG, Wendt-Pienkowski E, Motamedi H & Hutchinson CR (1992) Nucleotide sequence of thetcmII-tcmIV region of the tetracenomycin C biosynthetic gene cluster ofStreptomyces glaucescens and evidence that thetcmN gene encodes a multifunctional cyclase-dehydratase-O-methyl transferase. J. Bacteriol. 174: 1810–1820

    PubMed  Google Scholar 

  • Summers RG, Wendt-Pienkowski E, Motamedi H & Hutchinson CR (1993) ThetcmVI region of the tetracenomycin C biosynthetic gene cluster ofStreptomyces glaucescens encodes the tetracenomycin F1 monooxygenase, tetracenomycin F2 cyclase, and, most likely, a second cyclase. J. Bacteriol. 175: 7571–7580

    PubMed  Google Scholar 

  • Takano E, Gramaja HC, Strauch E, Andres N, White J & Bibb MJ (1992) Transcriptional regulation of theredD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin inStreptomyces coelicolor A3(2). Mol. Microbiol. 6: 2797–2804

    PubMed  Google Scholar 

  • Tang L & Hutchinson CR (1993) Sequence, transcriptional, and functional analysis of the valine (branched-chain amino acid) dehydrogenase gene ofStreptomyces coelicolor. J. Bacteriol. 175: 4176–4185

    PubMed  Google Scholar 

  • Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ & Bibb MJ (1986) Construction and characterisation of a series of multicopy promoter-probe plasmid vectors forStreptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203: 468–478

    PubMed  Google Scholar 

  • Weber JM, Schoner B & Losick R (1989) Identification of a gene required for the terminal step in erythromycin biosynthesis inSaccharopolysporaerythraea (Streptomyceserythreus). Gene 75: 235–241

    PubMed  Google Scholar 

  • Weber JM, Leung JO, Maine GT, Potenz RHB, Paulus TJ & DeWitt JP (1990) Organization of a cluster of erythromycin biosynthesis genes inSaccharopolyspora erythraea. J. Bacteriol. 172: 2372–2383

    PubMed  Google Scholar 

  • Weber JM, Leung JO, Swanson SJ, Idler KB & McAlpine JB (1991) An erythromycin derivative produced by targeted gene disruption inSaccharopolyspora erythraea. Science 252: 114–117

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, C.R., Decker, H., Madduri, K. et al. Genetic control of polyketide biosynthesis in the genusStreptomyces . Antonie van Leeuwenhoek 64, 165–176 (1993). https://doi.org/10.1007/BF00873025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873025

Key words

Navigation