Skip to main content
Log in

Inducing activity of subcellular fractions from amphibian embryos

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The homogenate from unfertilized eggs, gastrulae, neurulae and hatched embryos ofXenopus laevis was fractionated by differential centrifugation and subsequent repeated centrifugation on discontinuous sucrose gradients. A high archencephalic-neural inducing activity was found in RNP particles, which were released from the high-speed (“microsomal”) sediment by treatment with EDTA, and in a fraction of heterogeneous small vesicles. The highest archencephalic inducing activity was observed in RNP particles from unfertilized eggs and from gastrulae. RNP particles isolated from hatched embryos had a lower inducing activity. The neuralizing factor can be extracted from the small vesicles with pyrophosphate buffer at pH 8.6, but it is not solubilized with a non-ionic detergent (Triton X 100). The high-speed supernatant from the gastrula homogenate contains soluble neuralizing factor, whereas the supernatant from egg homogenate has a low inducing activity. The plasma membrane fraction (isolated from gastrulae) also has only a low inducing activity. The possible significance of the subcellular distribution of neuralizing factors for the transmission of neuralizing inducer from the mesoderm to competent gastrula ectoderm and the processing of signals which are generated on the plasma membrane of induced cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asashima M (1980) Inducing Effects of the Grey Crescent Region of Early Developmental Stages of Ambystoma Mexicanum. Wilhelm Roux's Arch 188:123–126

    Google Scholar 

  • Beisenherz G, Boltze HJ, Bücher Th, Czok R, Garbade KH, Meyer-Arendt E, Pfleiderer G (1953) Diphosphofructose-Aldolase. Phosphoglycerinaldehyd-Dehydrogenase, Glycerophosphat-Dehydrogenase and Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z Naturforsch 8b:535–577

    Google Scholar 

  • Faulhaber I (1970) Anreicherung des vegetalisierenden Induktionsfaktors aus der Gastrula des Krallenfrosches (Xenopus laevis) und Abgrenzung des Molekulargewichtsbereiches durch Gradientenzentrifugation. Hoppe Seylers Z Physiol Chem 351:588–594

    Google Scholar 

  • Faulhaber I, Lyra L (1974) Ein Vergleich der Induktionsfähigkeit vom Hüllenmaterial der Dotterplättchen und der Mikrosomenfraktion aus Furchungs- sowie Gastrula- und Neurulastadien des Krallenfrosches Xenopus laevis. Wilhelm Roux's Arch 176:151–157

    Google Scholar 

  • Holtfreter I (1934) Der Einfluß thermischer, mechanischer und chemischer Eingriffe auf die Induktionsfähigkeit von Tritonkeimen. Roux's Arch Entwicklungsmech Org 132:225–306

    Google Scholar 

  • Janeczek J, Born J, John M, Tiedemann H, Tiedemann H (1983) Ribonucleoprotein Particles from Xenopus Eggs and Embryos: Neural Inducing Activity of the Protein Moiety. [in preparation]

  • John M, Janeczek J, Hoppe P, Born J, Tiedemann H, Tiedemann H (1983a) Neural Induction in Amphibians: Transmission of a Neuralizing Factor. Wilhelm Roux's Arch 192:45–47

    Google Scholar 

  • John M, Born J, Tiedemann H, Tiedemann H (1983b) Activation of a neuralizing factor in amphibian ectoderm. Wilhelm Roux's Arch 193:13–18

    Google Scholar 

  • Mangold O (1923) Transplantationsversuche zur Frage der Spezifität und der Bildung der Keimblätter. Roux's Arch Entwicklungsmech Org 100:198–301

    Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal tables of Xenopus laevis (Daudin) Amsterdam, North Holland Pub. Co.

    Google Scholar 

  • Saxén L (1961) Transfilter neural induction of amphibian ectoderm. Dev Biol 3:140–152

    Google Scholar 

  • Saxén L, Toivonen S, Vainio T (1964) Initial stimulus and subsequent interactions in embryonic induction. J Embryol Exp Morph 12:333–338

    Google Scholar 

  • Spiegel M (1951) A method for the removal of the jelly and vitelline membrane of the egg of Rana pipiens. Anat Rec 111:544

    Google Scholar 

  • Tiedemann H (1982) Signals of Cell Determination in Embryogenesis. In: Jaenicke L (ed) 23. Colloquium Ges Biol Chem. Biochemistry of Differentiation and Morphogenesis, Springer, Berlin Heidelberg New York, pp 275–287

    Google Scholar 

  • Tiedemann H, Born J (1978) Biological Activity of Vegetalizing and Neuralizing Inducing Factors after Binding to BAC-Cellulose and CNBr-Sepharose. Roux's Arch Dev Biol 184:285–299

    Google Scholar 

  • Tiedemann H, Becker U, Tiedemann H (1961) Über die primären Schritte bei der embryonalen Induktion. Embryologia 6:204–218

    Google Scholar 

  • Vainio T, Saxén L, Toivonen S, Rapola S (1962) The transmission problem in primary embryonic induction. Exp Cell Res 27:527–538

    Google Scholar 

  • Wallace RA, Karasaki S (1963) Studies on Amphibian Yolk 2. The Isolation of Yolk Platelets from the Eggs of Rana pipiens. J Cell Biol 18:153–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janeczek, J., John, M., Born, J. et al. Inducing activity of subcellular fractions from amphibian embryos. Wilhelm Roux' Archiv 193, 1–12 (1984). https://doi.org/10.1007/BF00848594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00848594

Key words

Navigation