Skip to main content
Log in

Isolation, culture, and differentiation of echinoid primary mesenchyme cells

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

Methods are described for isolation and culture of primary mesenchyme cells from echinoid embryos. Ninety-five percentpure primary mesenchyme cells were isolated from early gastrulae ofStrongylocentrotus purpuratus, exploiting the biological segregation of these cells within the blastocoel. When cultured, more than 90% of the isolated cells reached the differentiated state, spicule formation, in synchrony with in vivo controls. Isolated primary mesenchyme cells were cultured with and without various cellular and acellular components of normal embryos in order to study the potential involvement of these components in the morphogenesis of the primary mesenchyme. Our data indicate that: 1. primary mesenchyme cells lack the ability to form the annular pattern of the primary mesenchymal ring autonomously; 2. they autonomously produce spicules of a characteristic morphology that differs from that of embryonic spicules; 3. morphogenesis of the primary mesenchyme is not affected by association with embryonic basal lamina, blastocoel matrix, or loosely aggregated epithelial cells, or by close confinement of each set of primary mesenchyme cells within the blastocoelar space; and 4. reaggregated, tightly associated epithelial cells can promote normal primary mesenchyme ring formation, and modify the primary mesenchyme-intrinsic spicule pattern to produce more normal spicule forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Czihak G (1962) Entwicklungsphysiologische Untersuchungen an Echiniden. (Topochemie der Blastula und Gastrula, Entwicklung der Bilateral- und der Coelomdivertikel). Wilhelm Roux's Archives 154:29–211

    Google Scholar 

  • Crise-Benson N, Benson SC (1979) Ultrastructure of collagen in sea urchin embryos. Wilhelm Roux's Archives 181:215–225

    Google Scholar 

  • Davidson JM (1974) On the role of the epithelial basal lamina in echinoid morphogenesis. Ph. D. Thesis: Dept. of Biological Sciences, Stanford University

  • Driesch M (1896) Die taktische Reizbarkeit der Mesenchymzellen vonEchinus microtuberculatus. Roux's Archives 3:362–380

    Google Scholar 

  • Gibbins JR, Tilney LG, Porter KR (1969) Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. I. The distribution of microtubules. J Cell Biol 41:201–227

    PubMed  Google Scholar 

  • Giudice G (1962) Restitution of whole larvae from disaggregated cells of sea urchin embryos. Dev Biol 5:402–411

    PubMed  Google Scholar 

  • Gustafson T (1963) Cellular mechanisms in the morphogenesis of the sea urchin embryo. Cell contacts within the ectoderm and between mesenchyme and ectoderm cells. Exp Cell Res 32:570–589

    PubMed  Google Scholar 

  • Gustafson T, Wolpert L (1961) Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae. Exp Cell Res 24:64–79

    PubMed  Google Scholar 

  • Gustafson T, Wolpert L (1963) The cellular basis of morphogenesis and sea urchin development. Int Rev Cytol 15:139–214

    PubMed  Google Scholar 

  • Harkey MA, Whiteley AH (1979) Gene expression in differentiating echinoid primary mesenchyme cells. Am Zool (Abstr) 19:501

    Google Scholar 

  • Herbst C (1896) Experimentelle Untersuchungen über den Einfluss der veränderten chemischen Zusammensetzung des umgebenden Mediums auf die Entwicklung der Tiere. III. Über das Ineinandergreifen von normaler Gastrulation und Lithiumentwicklung. Roux's Archives 2:455–516

    Google Scholar 

  • Hörstadius S (1935) Über die Determination im Verlaufe der Eiachse bei Seeigeln. Pubbl Stn Zool Napoli 14:251–479

    Google Scholar 

  • Hörstadius S (1975) Isolation and transplantation experiments. In: Czihak G (ed) The sea urchin embryo. Springer, Berlin, Heidelberg, New York, pp 364–406

    Google Scholar 

  • Hynes RO, Gross PR (1970) A method for separating cells from early sea urchin embryos. Dev Biol 21:383–402

    PubMed  Google Scholar 

  • Kane RE (1973) Hyalin release during normal sea urchin development and its replacement after removal at fertilization. Exp Cell Res 81:301–311

    PubMed  Google Scholar 

  • McClay DR, Marchase RB (1979) Separation of ectoderm and endoderm from sea urchin pluteus larvae and demonstration of germ layer-specific antigens. Dev Biol 71:289–296

    PubMed  Google Scholar 

  • Millonig G (1970) A study on the formation of the sea urchin spicule. J Submicrosc Cytol 2:157–165

    Google Scholar 

  • Okazaki K (1975a) Normal development to metamorphosis. In: Czihak G (ed) The sea urchin embryo. Springer, Berlin, Heidelberg, New York, pp 175–232

    Google Scholar 

  • Okazaki K (1975b) Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 15:567–581

    Google Scholar 

  • Okazaki K, Fukushi T, Dan K (1962) Cyto-embryological studies of sea urchins. IV. Correlation between the shape of the ectodermal cells and the arrangement of the primary mesenchyme cells in sea urchin larvae. Acta Embryol. Morphol Exp 5:17–31

    Google Scholar 

  • Okazaki K, Inoué S (1976) Crystal property of the larval sea urchin spicule. Dev Growth Differ 18:413–434

    Google Scholar 

  • Okazaki K, Niijima L (1964) Basement membrane in sea urchin larvae. Embryologia 8:89–100

    Google Scholar 

  • Showman RM, Foerder CA (1979) Removal of the fertilization membrane of sea urchin embryos employing aminotriazole. Exp Cell Res 120:253–256

    PubMed  Google Scholar 

  • Spiegel M, Spiegel ES (1975) The reaggregation of dissociated embryonic sea urchin cells. Am Zool 15:583–606

    Google Scholar 

  • Tyler A (1953) Prolongation of life-span of sea urchin spermatozoa, and improvement of spermatozoa and eggs with metal-chelating agents (amino acids, versene, DEDTC, oxine, cupron). Biol Bull 104:224–239

    Google Scholar 

  • Whiteley AH, Baltzer F (1958) Development, respiratory rate and content of desoxyribonucleic acid in the hybridParacentrotus ♀xArbacia♂. Pubbl Stn Zool Napoli 30:402–457

    Google Scholar 

  • Wolpert L, Gustafson T (1961) Studies on the cellular basis of morphogenesis of the sea urchin embryo. Development of the skeletal pattern. Exp Cell Res 25:311–325

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harkey, M.A., Whiteley, A.H. Isolation, culture, and differentiation of echinoid primary mesenchyme cells. Wilhelm Roux' Archiv 189, 111–122 (1980). https://doi.org/10.1007/BF00848500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00848500

Key words

Navigation