Skip to main content
Log in

The positive effect of hydrogen on the reaction of nitric oxide with carbon monoxide over platinum and rhodium catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of adding 330–4930 ppm hydrogen to a reaction mixture of NO and CO (2000 ppm each) over platinum and rhodium catalysts has been investigated at temperatures around 200–250°C. Hydrogen causes large increases in the conversion of NO and, surprisingly, also of CO. Oxygen atoms from the additional NO converted are eventually combined with CO to give CO2 rather than react with hydrogen to form water. This reaction is described by CO + NO +3/2H2 → CO2 + NH3 and accounts for 50–100% of the CO2 formed with Pt/Al2O3 and 20–50% with Rh/Al2O3. With the latter catalyst a substantial amount of NO converted produces nitrous oxide. Comparison with a known study of unsupported noble metals suggests that isocyanic acid (HNCO) might be an important intermediate in a reaction system with NO, CO and H2 present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.C. Taylor, Catal. Rev. Sci. Eng. 35 (1993) 457.

    Google Scholar 

  2. J.T. Kummer, J. Phys. Chem. 90 (1986) 4747.

    Google Scholar 

  3. W.F. Egelhoff, in:The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis. Fundamental Studies of Heterogeneous Catalysis, Vol. 4, eds. D.A. King and D.P. Woodruff (Elsevier, Amsterdam, 1982) p. 398.

    Google Scholar 

  4. M. Shelef and G.W. Graham, Catal. Rev. Sci. Eng. 36 (1994) 433.

    Google Scholar 

  5. R.K. Herz and J.A. Sell, J. Catal. 94 (1985) 166.

    Google Scholar 

  6. B.K. Cho, Ind. Eng. Chem. Res. 27 (1988) 30.

    Google Scholar 

  7. K.C. Taylor and R.M. Sinkevitch, Ind. Eng. Chem. Prod. Res. Dev. 22 (1983) 45.

    Google Scholar 

  8. G. Kim, Ind. Eng. Chem. Prod. Res. Dev. 21 (1982) 267.

    Google Scholar 

  9. J.G. Nunan, H.J. Robota, M.J. Cohn and S.A. Bradley, J. Catal. 133 (1992) 309.

    Google Scholar 

  10. J.H. Jones, J.T. Kummer, K. Otto, M. Shelef and E.E. Weaver, Env. Sci. Technol. 5 (1971) 790.

    Google Scholar 

  11. M. Shelef and H.S. Gandhi, Ind. Eng. Chem. Prod. Res. Dev. 11 (1972) 393.

    Google Scholar 

  12. K.C. Taylor and R.L. Klimisch, J. Catal. 30 (1973) 478.

    Google Scholar 

  13. T.P. Kobylinski and B.W. Taylor, J. Catal. 33 (1974) 376.

    Google Scholar 

  14. H. Shinjoh, H. Muraki and Y. Fujitani, Stud. Surf. Sci. Catal. 30 (1987) 187.

    Google Scholar 

  15. N.K. Pande and A.T. Bell, Appl. Catal. 20 (1986) 109.

    Google Scholar 

  16. L. Heezen, V.N. Kilian, R.F. Van Slooten, R.M. Wolf and B.E. Nieuwenhuys, Stud. Surf. Sci. Catal. 71 (1991) 381.

    Google Scholar 

  17. R. Dümpelmann, N.W. Cant and D. Trimm,Proc. 3rd Int. Symp. on Catalysis and Automotive Pollution Control (CAPoC3), Brussels, April 1994, in press.

  18. T. Uchijima, J.M. Herrman, Y. Inoue, R.L. Burwell, J.B. Butt and J.B. Cohen, J. Catal. 50 (1977) 464.

    Google Scholar 

  19. R.M. Lambert and C.M. Comrie, Surf. Sci. 46 (1974) 61.

    Google Scholar 

  20. B.E. Nieuwenhuys, Surf. Sci. 126 (1983) 307.

    Google Scholar 

  21. H. Hirano, T. Yamada, K.I. Tanaka, J. Siera, P. Cobden and B.E. Nieuwenhuys, Surf. Sci. 262 (1992) 97.

    Google Scholar 

  22. M.F. Brown and R.D. Gonzalez, J. Catal. 44 (1976) 477.

    Google Scholar 

  23. R.F. Van Sloten and B.E. Nieuwenhuys, J. Catal. 122 (1990) 429.

    Google Scholar 

  24. D.A. Lorimer and A.T. Bell, J. Catal. 59 (1979) 223.

    Google Scholar 

  25. W.C. Hecker and A.T. Bell, J. Catal. 84 (1983) 200.

    Google Scholar 

  26. R. Dictor, J. Catal. 109 (1988) 89.

    Google Scholar 

  27. Y. Nishiyama and H. Wise, J. Catal. 32 (1974) 50.

    Google Scholar 

  28. W.C. Hecker and A.T. Bell, J. Catal. 92 (1985) 247.

    Google Scholar 

  29. E. Shustorovich and A.T. Bell, Surf. Sci. 289 (1993) 127.

    Google Scholar 

  30. H. Hirano, T. Yamada, K.I. Tanaka, J. Siera and B.E. Nieuwenhuys,10th Congr. on Catalysis, Budapest, Part A (1992) 345, question/answer section.

  31. F. Solymosi and J. Kiss, Surf. Sci. 108 (1981) 641.

    Google Scholar 

  32. F. Solymosi, L. Voelgyesi and J. Rasko, Z. Phys. Chem. 120 (1980) 79.

    Google Scholar 

  33. M.L. Unland, J. Phys. Chem. 77 (1973) 1952.

    Google Scholar 

  34. H. Niiyama, M. Tanaka, H. Iida and E. Echigoya, Bull. Chem. Soc. Jpn. 49 (1976) 2047.

    Google Scholar 

  35. R.J.H. Voorhoeve, L.E. Trimble and D.J. Freed, Science 200 (1978) 759.

    Google Scholar 

  36. R.J.H. Voorhoeve and L.E. Trimble, J. Catal. 53 (1978) 251.

    Google Scholar 

  37. R.J.H. Voorhoeve and L.E. Trimble, J. Catal. 54 (1978) 269.

    Google Scholar 

  38. L.E. Trimble and R.J.H. Voorhoeve, Analyst 103 (1978) 759.

    Google Scholar 

  39. R. Dümpelmann, N.W. Cant and D.L. Trimm, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dümpelmann, R., Cant, N.W. & Trimm, D.L. The positive effect of hydrogen on the reaction of nitric oxide with carbon monoxide over platinum and rhodium catalysts. Catal Lett 32, 357–369 (1995). https://doi.org/10.1007/BF00813230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00813230

Keywords

Navigation