Skip to main content
Log in

Thermodynamic properties and phase equilibria of the lead-tellurium binary system

Thermodynamische Eigenschaften und Phasengleichgewichte des binären Systems Blei—Tellur

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

The liquidus curve of the Pb-Te binary was measured using two different DTA systems, one employing a small sample (0.2 g) and the second a large sample (5 g). An additional liquidus measurement method was employed for the Pb-rich region in which the liquid equilibrated with PbTe was analyzed chemically. The liquidus for the Pb-PbTe subsystem obtained is in agreement with several sets of data reported in the literature. The literature data for the PbTe-Te are in disagreement. Our measured values resolve this discrepancy and yield a eutectic temperature of 410.9±0.8°C at 89.1±0.3 at % Te. The system was thermochemically modelled using an associated solution model for the liquid phase and a defect model for PbTe. This model not only accounts for compositional and temperature dependences of the thermodynamic data but also for electron and hole concentrations within the homogeneous range of PbTe(c).

Zusammenfassung

Die Liquiduskurve des Binärsystems Pb-Te wurde unter Verwendung von zwei verschiedenen DTA-Systemen (eines unter Anwendung kleiner Probenmengen von 0.2 g, das zweite für größere Probenmengen von 5 g) gemessen. Eine weitere Meßmethode wurde für die Pb-reiche Region herangezogen, wobei die mit Pb-Te äquilibrierte flüssige Phase chemisch analysiert wurde. Der erhaltene Liquidusverlauf für das Pb-PbTe-Subsystem ist mit verschiedenen Literaturdaten in Übereinstimmung. Die Literaturdaten für PbTe-Te sind allerdings abweichend. Unsere Meßdaten klären diese unterschiedlichen Angaben und ergeben eine eutektische Temperatur von 410.9±0.8°C bei 89.1±0.3 at% Te. Für das System wurde ein thermochemisches Modell unter Verwendung eines assoziierten Lösungsmodells für die flüssige Phase und eines Defektmodells für PbTe angewandt. Dieses Modell gab nicht nur die Zusammensetzungs- und Strukturabhängigkeiten der thermodynamischen Daten wieder, sondern auch die Elektronen- und Lückenkonzentrationen innerhalb des homogenen PbTe(c)-Bereichs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fay H, Gillson CB (1902) Am Chem J 27: 81–95

    Google Scholar 

  2. Pelabon MH (1909) Ann Chim Phys 17: 526–566

    Google Scholar 

  3. Kimura M (1915) Mem Coll Sci Kyoto Univ 1: 149–152

    Google Scholar 

  4. Gravemann H, Wallbaum H-J (1956) Z Metallk 47: 433–441

    Google Scholar 

  5. Pelzel BE (1956) Metall 10: 717–719

    Google Scholar 

  6. Davey TRA (1961) Physical chemistry of process metallurgy, AIME. Interscience, New York (AIME metallurgical society conference, vol 7), pp 581–600

    Google Scholar 

  7. Lugscheider W, Ebel H, Langer G (1965) Z Metallk 56: 851–852

    Google Scholar 

  8. Miller E, Komarek KL (1966) Trans TMS AIME 236: 832–840

    Google Scholar 

  9. Wagner JW, Thompson AG (1970) J Electrochem Soc 117: 936–940

    Google Scholar 

  10. Harris JS, Longo JT, Gertner ER, Clarke JE (1975) J Cryst Growth 28: 334–342

    Google Scholar 

  11. Moniri N, Petot C (1978) J Calorim Anal Thermo (Prepr) 9 B: B 24 195–201

    Google Scholar 

  12. Astles Poltatto MG, Crocker AJ (1979) J Cryst Growth 47: 379–383

    Google Scholar 

  13. Petukhov AP, Andreev YuV, Olesk AO (1980) Izv Akad Nauk SSSR, Neorg Mater 16: 272–274:Petukhov AP, Andreev YuV, Olesk AO (1980) Inorg Mater 16: 176–177

    Google Scholar 

  14. Kharif YL, Kovtunenko PV, Maier AA, Avetisov IK (1982) Russ J Phys Chem 56: 1331–1334

    Google Scholar 

  15. Glazor VM, Parlova LM (1983) Russ J Phys Chem 57: 1314–1318

    Google Scholar 

  16. Endo H (1927) Science Repts Tohoku Imp Univ 16: 201–210

    Google Scholar 

  17. Honda K, Endo H (1927) J Inst Metals 37: 29–49

    Google Scholar 

  18. Hansen M, Anderko K (1958) Constitution of binary alloys, 2nd ed. McGraw-Hill, New York

    Google Scholar 

  19. Miller E, Komarek K, Cadoff I (1959) Trans TMS AIME 215: 882–887

    Google Scholar 

  20. Brebrick RF, Allgaier RS (1966) J Chem Phys 32: 1826–1831

    Google Scholar 

  21. Miller E, Komarek K, Cadoff I (1960) Trans TMS AIME 218: 382

    Google Scholar 

  22. Chou N, Komarek K, Miller E (1969) Trans TMS AIME 245: 1553–1560

    Google Scholar 

  23. Dedgkaev TT, Mikrousov NE, Moshnikov VA, Taskov DA (1983) Russ J Phys Chem 57: 944–946

    Google Scholar 

  24. Fritts RW (1969) In:Cadoff IB, Miller E (eds) Thermoelectric materials and devices. Reinhold, New York, pp 143–162

    Google Scholar 

  25. Brebrick RF, Gubner E (1962) J Chem Phys 36: 1283–1289

    Google Scholar 

  26. Hewes CR, Adler MS, Senturia SD (1973) J Appl Phys 44: 1327–1332

    Google Scholar 

  27. Strauss AJ (1973) J Elec Materials 2: 553–569

    Google Scholar 

  28. Brebrick RF (1977) J Electron Mater 6: 659–692

    Google Scholar 

  29. Gas'kov AM, Zlomanov VP, Novogelova AV (1979) Inorg Mater 15: 1153–1165

    Google Scholar 

  30. Akchurin RK, Ufimtsev VB (1979) Russ J Phys Chem 53: 814–816

    Google Scholar 

  31. Castanet R, Claire Y, Laffitte M (1972) High Temp High Press 4: 343–351

    Google Scholar 

  32. Maekawa T, Yokokawa T, Niwa K (1972) Bussei Kenkyu 17: 282–286

    Google Scholar 

  33. Blachnik R, Gather B (1983) J Less Common Metals 92: 207–213

    Google Scholar 

  34. Predel B, Piehl J, Pool MJ (1975) Z Metallkunde 66: 347–352

    Google Scholar 

  35. Fuglevicz B (1984) Polish J Chem 58: 983–984

    Google Scholar 

  36. Fujimoto M, Sato Y (1966) Jpn J Appl Phys 5: 128–133

    Google Scholar 

  37. Brebrick RF, Strauss AK (1964) J Chem Phys 40: 3430–3241

    Google Scholar 

  38. Bis RF (1963) J Phys Chem Solids 24: 579–581

    Google Scholar 

  39. Gas'kov AM, Zlomanov VP, Novoselova AV (1970) Vestn Mosk Univ Khim 25: 49–50

    Google Scholar 

  40. Zlomanov VP,Novozhilov AF,Novoselova AV,Makayov AV (1977) Paluprovda. Materialy i Ikh Primenenie: 90–103

  41. Sadykov KB, Semenkovich SA (1966) Izvest Akad Nauk Turkm SSR, Ser Fiz Tekh Khim Geol Nauk 2: 16–21

    Google Scholar 

  42. Shamsuddin M (1977) Mat Res Bull 12: 7–12

    Google Scholar 

  43. Sealy BJ, Crocker AJ (1973) J Mater Sci 8: 1737–1743

    Google Scholar 

  44. Blachnik R, Igel R (1974) Z Naturforsch 29 B: 625–629

    Google Scholar 

  45. Wohlrab M (1966) Ann Physik (7) 17: 89–90

    Google Scholar 

  46. Blachnik R, Kluge W (1972) Thermochem Acta 3: 317–325

    Google Scholar 

  47. Petukhov AP, Korner BF, Golovchenko VV (1980) Izvest Akad Nauk SSSR, Neorg Mater 16: 358–359

    Google Scholar 

  48. Fabre C (1887) Compt Rend 105: 277–280

    Google Scholar 

  49. Hirayama C (1964) J Chem Eng Data 9: 65–68

    Google Scholar 

  50. Robinson PM, Bever MB (1966) Trans TMS AIME 236: 814–817

    Google Scholar 

  51. Vecher AA, Mechkovskii LA, Skoropanov AS (1974) Izvest Akad Nauk SSSR, Neorg Mater 10: 2140–2143

    Google Scholar 

  52. McAteer JH, Seltz H (1936) Am Chem Soc 58: 2081–2084

    Google Scholar 

  53. Shamsuddin M,Misra S (1981) In:Gokcen NA (ed) Chemistry metallurgy—a tribute to Carl Wagner, The Metallurgical Society of AIME, pp 241–256

  54. Pashinkin AS, Novoselova AV (1959) Russian J Inorg Chem 4: 1229–1231

    Google Scholar 

  55. Sokolov VV, Pashchinkin AS, Novogelova AV, Ryazantsev AA, Dolgikh VA, Klinchikova SA (1969) Inorg Mater 5: 12–15

    Google Scholar 

  56. Mills KC (1974) Thermodynamic data for inorganic sulfides, selenides and tellurides, Butterworth and Co.

  57. Laugier A (1973) Rev Phys Appl 8: 259–270

    Google Scholar 

  58. Laugier A, Cadoz J, Faure M, Moulin M (1974) J Cryst Growth 21: 235–242

    Google Scholar 

  59. Szapiro S, Tamari N, Shtrikman H (1981) J Electron Mater 10: 501–516

    Google Scholar 

  60. Kattner U, Lukas HL, Petzow G (1986) Calphad 10: 103–116

    Google Scholar 

  61. Sharma RC, Chang YA (1979) Metall Trans B 10 B: 103–108

    Google Scholar 

  62. Sharma RC, Chang YA (1980) Metall Trans B 11 B: 139–146

    Google Scholar 

  63. Chuang Y-Y, Hsieh K-C, Chang YA (1985) Metall Trans B 16 B: 277–285

    Google Scholar 

  64. Hsieh K-C, Wei MS, Chang YA (1983) Z Metallk 74: 330–337

    Google Scholar 

  65. Schmid R, Chang YA (1985) Calphad 9: 363–382

    Google Scholar 

  66. Kellogg HH (1976) In:Fisher RM, Oriani RA, Turkdogan ET (eds) Physical chemistry in metallurgy. US Steel Res Lab, Monroeville, PA, pp 49–68

    Google Scholar 

  67. Chuang Y-Y, Schmid R, Chang YA (1984) Metall Trans A 15A: 1921–1930

    Google Scholar 

  68. Prigogine I, Defay O (1965) Chemical thermodynamics. Longmans Green and Co., London, pp 410–411

    Google Scholar 

  69. Lupis CHP, Elliott JF (1966) Acta Met 14: 529–538

    Google Scholar 

  70. Lin J-C, Ngai TL, Chang YA (1986) Metall Trans A 17A: 1241–1245

    Google Scholar 

  71. Brebrick RF (1977) J Electron Mater 6: 659–692

    Google Scholar 

  72. Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK, Wagman DD (1973) Selected values of the thermodynamic properties of the elements. Am Soc for Metals, Metals Park, Ohio

    Google Scholar 

  73. Bulletin of Alloy Phase Diagrams (1981) 2: 146

  74. Greenwood JN, Worner HW (1939) J Inst Met 115: 435–445

    Google Scholar 

  75. Heinrich H (1980) In:Zawadzki W (ed) Narrow gap semiconductors physics and applications. Springer, Berlin Heidelberg New York, p 407

    Google Scholar 

  76. Hemstreet LH (1975) Phys Rev B 12: 1212

    Google Scholar 

  77. Chang YA and co-workers (1986) unpublished data, University of Wisconsin-Madison, Madison, Wisconsin

  78. Bhatia AB, Thornton DE (1970) Phys Rev B 8: 3004–3012

    Google Scholar 

  79. Waseda Y, Jacob KT (1981) Arch Eisenhüttenwes 52: 131–136

    Google Scholar 

  80. Hewes CR, Adler MS, Senturia SD (1973) Phys Rev B 7: 5195

    Google Scholar 

  81. Preier H (1979) Appl Phys 20: 189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Dr.Kurt L. Komarek on the occasion of his 60th birthday.

On leave from India Institute of Technology-Kanpur, Kanpur, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngai, T.L., Marshall, D., Sharma, R.C. et al. Thermodynamic properties and phase equilibria of the lead-tellurium binary system. Monatsh Chem 118, 277–300 (1987). https://doi.org/10.1007/BF00809938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00809938

Keywords

Navigation