Skip to main content
Log in

Heterogeneity of myocardial blood flow

  • Invited Contributions to the Symposium “Regulation of Coronary Blood Flow”, Held at the XV. World Congress of the International Society for Heart Research in Prague
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Myocardial blood flow is heterogeneous, whether considered by chamber, by layers of the ventricular walls, or by microregions within layers. There is also variability of myocardial flow reserve, particularly in layers and microregions, even when the heart is arrested. The variability of flow during arrest may be associated with the resistance pathways to each region, but the variability of flows in the beating heart with vascular tone is probably due to regional differences in work and thus oxygen demand. Heterogeneity by layer may be responsible for the subendocardial ischemia that is common to many forms of heart disease. Microheterogeneity may account for the patchy necrosis that occurs with chronic ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allanby KD, Campbell M (1949) Congenital pulmonary stenosis with closed ventricular septum. Guy's Hosp Rep 98: 18–53

    Google Scholar 

  2. Alpert LL, Pai SH, Zak FG, Werthamer S (1972) Cardiomyopathy associated with a pheochromocytoma. Arch Pathol 93: 544–548

    Google Scholar 

  3. Archie JP (1973) Determinants of intramyocardial pressure. J Surg Res 14: 338–346

    Google Scholar 

  4. Archie JP, Brown R (1974) Effect of preload on the transmural distribution of diastolic coronary blood flow. J Surg Res 16: 215–223

    Google Scholar 

  5. Archie JP, Fixler DE, Ullyot DJ, Buckberg GD, Hoffman JIE (1974) Regional myocardial blood flow in lambs with concentric right ventricular hypertrophy. Circ Res 34: 143–154

    Google Scholar 

  6. Arts, T, Reneman RS (1985) Interaction between intramyocardial pressure (IMP) and myocardial circulation. J Biomech Eng 107: 51–56

    Google Scholar 

  7. Ashikawa K, Kanatsuka KH, Suzuki T, Takishima T (1986) Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 59: 704–711

    Google Scholar 

  8. Austin RE Jr, Aldea GS, Coggins DL, Flynn AE, Hoffman JIE (1990) Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ Res 67: 319–331

    Google Scholar 

  9. Austin RE, Jr, Smedira NG, Squers TM, Hoffman JIE (1994) Influence of cardiac contraction and coronary vascomotor tone on regional myocardial blood flow. Am J Physiol 266 (Heart Circ Physiol) 35: H2542–H2553

    Google Scholar 

  10. Aversano, T, Becker LC (1985) Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 248 (Heart Circ Physiol 17): H403–H411

    Google Scholar 

  11. Bassingthwaighte JB (1988) Physiological heterogeneity: fractals link determinism and randomness in structure and function. News in Physiological Sciences 3: 5–10

    Google Scholar 

  12. Bassingthwaighte JB, King RB, Roger SA (1989) Fractal nature of regional blood flow heterogeneity. Circ Res 65: 578–590

    Google Scholar 

  13. Bassingthwaighte JB, Van Beek JH, King RB (1990) Fractal branchings: the basis of myocardial flow heterogeneities?. Ann New York Acad Sci 591: 392–401

    Google Scholar 

  14. Bassingthwaighte JB, Yipintsoi T, Harvey RB (1974) Microvasculature of the dog left ventricular myocardium. Microvasc Res 7: 229–249

    Google Scholar 

  15. Bauman RP, Remberg JC, Greenfield JC, Jr (1993) Regional blood flow in canine atria during exercise. Am J Physiol 265 (Heart Circ Physiol 34): H629–H632

    Google Scholar 

  16. Becker LC, Ferreira R, Thomas M (1973) Mapping of left ventricular blood flow with radioactive microspheres in experimental coronary artery occlusion. Cardiovasc Res 7: 391–400

    Google Scholar 

  17. Bishop SP, White FC, Bloor CM (1976) Regional myocardial blood flow during myocardial infarction in the conscious dog. Circ Res 38: 429–438

    Google Scholar 

  18. Blumgart HL, Schlesinger MJ, Davis D (1940) Studies on the relation of the clinical manifestations of angina pectoris, coronary thrombosis, and myocardial infarction to the pathologic findings. Am Heart J 19: 1–91

    Google Scholar 

  19. Botham MJ, Lemmer JH, Gerren RA, Long RW, Behrendt DM, Gallagher KP (1984) Coronary vasodilator reserve in young dogs with moderate right ventricular hypertrophy. Ann Thorac Surg 38: 101–107

    Google Scholar 

  20. Bouchardy B, Majno G (1974) Histopathology of early myocardial infarcts. A new approach. Am J Pathol 74: 301–330

    Google Scholar 

  21. Buckberg GD, Eber DL, Herman M, Gorlin R (1975) Ischemia in aortic stenosis; hemodynamic prediction. Am J Cardiol 35: 778–784

    Google Scholar 

  22. Buckberg GD, Fixler DE, Archie JP, Hoffman JIE (1972) Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 30: 67–81

    Google Scholar 

  23. Buckberg GD, Towers B, Paglia DB, Mulder DG, Maloney JV (1972) Subendocardial ischemia after cardiopulmonary by-pass. J Thorac Cardiovasc Surg 64: 669–684

    Google Scholar 

  24. Buja LM, Parkey WR, Dees JH, Stokely EM, Harris RA, Jr, Bonte FJ, Willerson JT (1975) Morphologic correlates of technetium-99m stannous pyrophosphate imaging of acute myocardial infarcts in dogs. Circulation 52: 596–607

    Google Scholar 

  25. Bulkley BH, Hutchins GM (1977) Myocardial consequences of coronary artery bypass graft surgery. The paradox of necrosis in areas of revascularization. Circulation 56: 906–913

    Google Scholar 

  26. Canty JM, Jr, Klocke FJ (1985) Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71: 370–377

    Google Scholar 

  27. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy B (1988) A theoretical model for myocardial blood flow. In (eds), Cardiovascular Dynamics and Models, Colloque INSERM, 183 Brun P, Chadwick RS, Levy BI (eds) Paris: Les Editions INSERM, pp 77–90

    Google Scholar 

  28. Chandramouli B, Ehmke DA, Lauer RM (1975) Exercise-induced electrocardiographic changes in children with congenital aortic stenosis. J Pediatr 87: 725–730

    Google Scholar 

  29. Cheitlin MD, Robinowitz M, McAllister H, Hoffman JIE, Bharati S, Lev M (1980) The distribution of fibrosis in the left ventricle in congenital aortic stenosis and coarctation of the aorta. Circulation 62: 823–830

    Google Scholar 

  30. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML (1989) Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 256 (Heart Circ Physiol 25): H383–H390

    Google Scholar 

  31. Chiu CJ, Mersereau WA, Scott HJ (1972) Subendocardial hemorrhagic necrosis. J Thorac Cardiovasc Surg 64: 66–75

    Google Scholar 

  32. Coggins DL, Flynn AE, Austin, RE, Jr, Aldea GS, Muehrcke D, Goto M, Hoffman JIE (1990) Nonuniform loss of regional flow reserve during myocardial ischemia in dogs. Circ Res 67: 253–264

    Google Scholar 

  33. Cooper N, Brazier J Buckberg G (1975) Effects of systemic-pulmonary shunts on regional myocardial blood flow in experimental pulmonary stenosis. J Thorac Cardiovasc Surg 70: 166–176

    Google Scholar 

  34. Dick MR, Unverferth DV, Baba N (1983) The pattern, of myocardial degeneration in nonischemic congestive cardiomyopathy. Hum Pathol 13: 740–744

    Google Scholar 

  35. Edwards JE (1957) Correlations in coronary arterial disease. Bull NY Acad Med 33: 199–217

    Google Scholar 

  36. Ehrich WE, Bellet S, Lewey FH (1994) Cardiac changes from CO poisoning. Am J Med 208: 511–535

    Google Scholar 

  37. Elliot AH (1934) Anemia as a cause of angina pectoris in the presence of healthy coronary arteries and aorta: report of a case. Am J Med Sci 187: 185–190

    Google Scholar 

  38. Esterly JR, Oppenheimer EH (1967) Some aspects of cardiac pathology in infancy and childhood. IV. Myocardial and coronary lesions in cardiac malformations. Pediatrics 39: 896–903

    Google Scholar 

  39. Falcone MW, Roberts WC, Morrow AG, Perloff JK (1971) Congenital aortic stenosis resulting from a unicommissural valve. Circulation 44: 272–280

    Google Scholar 

  40. Fallen EL, Elliott WC, Gorlin R (1967) Mechanisms of angina in aortic stenosis. Circulation 36: 480–488

    Google Scholar 

  41. Falsetti HL, Carroll RJ, Marcus ML (1975) Temporal heterogeneity of myocardial blood flow in anesthetized dogs. Circulation 52: 848–853

    Google Scholar 

  42. Farrar-Brown G (1968) Normal and diseased vascular pattern of myocardium of human heart. II. Pattern seen with fibrosis of the left ventricular free wall. Br Heart J 30: 537–545

    Google Scholar 

  43. Feigl EO (1983) Coronary physiology. Physiol Rev 63; 1–205

    Google Scholar 

  44. Ferrans VJ, Hibbs RG, Black WC, Weilbaecher DG (1964) Isoproterenol-induced myocardial necrosis. A histochemical and electron microscopic study. Am Heart J 68: 71–90

    Google Scholar 

  45. Fixler DE, Archie JP, Ullyot DJ, Hoffman JIE (1973) Effects of acute right ventricular systolic hypertension on regional myocardial blood flow in anesthetized dogs. Am Heart J 85: 491–500

    Google Scholar 

  46. Flynn AE, Coggins DL, Goto M, Aldea GS, Austin RE, Doucette JW, Husseini W, Hoffman JIE (1992) Does systolic subepicardial perfusion come from retrograde subendocardial flow? Am J Physiol 262 (Heart Circ Physiol 31): H1759–H1769

    Google Scholar 

  47. Forrester JS, Helfant RH, Pasternac A, Amsterdam EA, Most AS, Kemp HG, Gorlin R (1971) Atrial pacing in coronary heart disease — Effects on hemodynamics, metabolism and coronary circulation. Am J Cardiol 27: 237–243

    Google Scholar 

  48. Franzen D, Conway RS, Zhang H, Sonnenblick EH, Eng C (1988) Spatial heterogeneity of local blood flow and metabolite content in dog hearts. Am J Physiol 254 (Heart Circ. Physiol 23): H344–H353

    Google Scholar 

  49. Freifeld AG, Schuster EH, Bulkley BH (1983) Nontransmural versus transmural myocardial infarction. A morphologic study. Am J Med 75: 423–432

    Google Scholar 

  50. Fulton WFM (1964) Anastomotic enlargement and ischaemic myocardial damage. Br Heart J 26: 1–15

    Google Scholar 

  51. Ghidoni JJ, Liotta D, Thomas H (1969) Massive subendocardial damage accompanying prolonged ventricular fibrillation. Am J Pathol 56: 15–30

    Google Scholar 

  52. Gold FL, Bache RJ (1982) Transmural right ventricular blood flow during acute pulmonary artery hypertension in the awake dog: evidence for subendocardial ischemia during right ventricular failure despite residual vasodilator reserve. Circ Res 51: 196–204

    Google Scholar 

  53. Goto M, Flynn AE, Doucette JW, Jansen CM, Stork MM, Coggins DL, Muehrcke DD, Husseini WK, Hoffman JIE (1991) Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol 261: (Heart Circ Physiol 30) H1417–H1429

    Google Scholar 

  54. Grattan MT, Hanley FL, Stevens MB, Hoffman JIE (1986) Transmural coronary flow reserve patterns in dogs. Am J Physiol 250 (Heart Circ Physiol 19): H276–H283

    Google Scholar 

  55. Greenhout JH, Reichenbach DD (1969) Cardiac injury and subarachnoid hemorrhage. J Neurosurg 30: 521–531

    Google Scholar 

  56. Griggs DM, Nakamura Y (1968) Effect of coronary constriction on myocardial distribution of iodoantipyrine-131I. Am J Physiol 215: 1082–1088

    Google Scholar 

  57. Guyton RA, McClenathan JH, Newman GE, Michaelis LL (1977) Significance of subendocardial S-T segment elevation caused by coronary stenosis in the dog. Am J Cardiol 40: 373–380

    Google Scholar 

  58. Hackel DB, Martin AM Jr, Spach MS, Sieker HO (1964) Hemorrhagic shock in dogs. Relation of hemodynamic and metabolic changes to myocardial lesions. Arch Pathol 77: 575–581

    Google Scholar 

  59. Hackel DR, Goodale WT (1955) Effects of hemorrhagic shock on the heart and circulation of intact dogs. Circulation 11: 628–634

    Google Scholar 

  60. Haft JI (1974) Cardiovascular injury induced by sympathetic catecholamines. Prog Cardiovasc Dis 17: 73–86

    Google Scholar 

  61. Halloran KH (1971) The telemetered exercise electrocardiogram in congenital aortic stenosis. Pediatrics 47: 31–39

    Google Scholar 

  62. Hamlin RL, Levesque MJ, Kittelson MD (1982) Intramyocardial pressure and distribution of coronary blood flow during systole and diastole in the horse. Cardiovasc Res 16: 256–262

    Google Scholar 

  63. Harvey WP, Segal JP, Hufnagel CA (1957) Unusual clinical features associated with severe aortic insufficiency. Ann Intern Med 47: 27–38

    Google Scholar 

  64. Heethaar RM, Pao YC, Ritman EL (1977) Computer aspects of three-dimensional finite element analysis of stresses and strains in the intact heart. Comput Biomed Res 10: 271–285

    Google Scholar 

  65. Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249 (Heart Circ Physiol 18): H1216–H1223

    Google Scholar 

  66. Hoffman JIE (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29: 429–464

    Google Scholar 

  67. Hoffman JIE, Baer RW, Hanley FL, Messina LM, Grattan MT (1985) Regulation of transmural myocardial blood flow. J Biomech Eng 107: 2–9

    Google Scholar 

  68. Hoffman JIE, Buckberg GD (1976) Transmural variations in myocardial perfusion. In Progress in Cardiology, Yu PN, Goodwin JF (eds.), Philadelphia: Lea and Febiger, pp 5: 37–89

    Google Scholar 

  69. Hoffman JIE, Buckberg GD, Fixler DE, Archie JP (1972) Regional flow in the right and left ventricular free walls and septum during tachycardia, aortic constriction and arterio-venous fistulas. In Maseri A (ed.) Myocardial Blood Flow in Man. Methods and Significance in Coronary Disease. Torino: Minerva Medica, pp 65–78

    Google Scholar 

  70. Holmberg S, Serzysko W, Varnauskas E (1971) Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med Scand 190: 465–480

    Google Scholar 

  71. Holmberg S, Varnauskas E (1971) Coronary circulation during pacing-induced tachycardia. Acta Med Scand 190: 481–490

    Google Scholar 

  72. Hottenrott CE, Towers B, Kurkji HJ, Maloney JV, Buckberg GD (1973) The hazard of ventricular fibrillation in hypertrophied ventricles during cardiopulmonary bypass. J Thorac Cardiovasc Surg 66: 742–753

    Google Scholar 

  73. Ince C, Ashruf JF, Avontuur JAM, Wieringa PA, Spaan JAE, Bruining HA (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level. Am J Physiol 264 (Heart Circ Physiol 33): H294–H301

    Google Scholar 

  74. Intaglietta M (1981) Vasomotor activity, time-dependent fluid exchange and tissue pressure. Microvasc Res 21: 153–164

    Google Scholar 

  75. Ishikawa K, Kamata N, Nakai S, Akiyama H, Koka H, Ogawa I, Katori R (1994) Preservation of high regional blood flow at epicardial rim after coronary occlusion in dogs. Am J Physiol 267 (Heart Circ Physiol 36): H528–H534

    Google Scholar 

  76. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H (1960) Myocardial necrosis induced by temporary occlusion artery in the dog. Arch Pathol 70: 68–78

    Google Scholar 

  77. Jones CJH, Kuo L, Davis MJ, DeFily DV, Chilian WM (1995) Rok of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation 91: 1807–1813

    Google Scholar 

  78. Kanatsuka H, Lamping KG, Eastham CL, Marcus ML (1990) Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence for the microvascular site for autoregulation. Circulation Research 66: 389–396

    Google Scholar 

  79. Kanatsuka H, Lamping KG, Eastham CL, Dellsperger KC, Marcus ML (1989) Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance. Circulation Research 65: 1296–1305

    Google Scholar 

  80. Kassab GS, Rider CA, Tang NJ, Fung Y-CB (1993) Morphometry of pig coronary arterial trees. Am J Physiol 265 (Heart Circ Physiol 34): H350–H365

    Google Scholar 

  81. King RB, Bassingthwaighte JB (1989) Temporal fluctuations in regional myocardial flows. Pflügers Arch 413: 336–342

    Google Scholar 

  82. King RB, Bassingthwaighte JB, Hales JRS, Rowell LB (1985) Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res 57: 285–295

    Google Scholar 

  83. Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32: 516–522

    Google Scholar 

  84. Koskelo P, Punsar S, Sipila W (1964) Subendocardial haemorrhage and ECG changes in intracranial bleeding. Br Med J 1: 1479–1486

    Google Scholar 

  85. Kuo L, Davis MJ, Chilian WM (1988) Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol 255 (Heart Circ Physiol 24): H1558–H1562

    Google Scholar 

  86. Lasser RP, Genkins G (1957) Chest pain in patients with isolated pulmonic stenosis. Circulation 15: 258–266

    Google Scholar 

  87. Levy BI, Tedgui A, Michel JB (1985) A mechanical model of the dynamics of the coronary circulation in dog. J Theor Biol 116: 225–242

    Google Scholar 

  88. Lundsgaard-Hansen P, Meyer C, Riedwyl H (1967) Transmural gradients of glycolytic enzyme activities in left ventricular myocardium. Pflügers Arch 297: 89–106

    Google Scholar 

  89. Mallory GK, White PD, Salcedo-salgar J (1958) Speed of healing of myocardial infarctions: study of pathologic anatomy in 72 cases. Am Heart J 18: 647–671

    Google Scholar 

  90. Marcus ML, Kerber RE, Erhardt JC, Falsetti HL, Davis DM, Abboud FM (1977) Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J 94: 748–754

    Google Scholar 

  91. Maron BJ, Redwood DR, Roberts WC, Henry WL, Morrow AG, Epstein SE (1976) Tunnel subaortic stenosis. Left ventricular outflow tract obstruction produced by fibromuscular tubular narrowing. Circulation 54: 404–416

    Google Scholar 

  92. Marquis RM, Logan A (1955) Congenital aortic stenosis and its surgical treatment. Br Heart J 17: 373–390

    Google Scholar 

  93. Master AM, Dack S, Horn H, Freedman BI, Field LE (1950) Acute coronary insufficiency due to acute hemorrhage: an analysis of one hundred and three cases. Circulation 1: 1302–1317

    Google Scholar 

  94. Merril WH, Alexander SL, Conkle DM (1981) Coronary blood flow and distribution in right ventricular hypertrophy. J Thorac cardiovasc Surg 82: 365–371

    Google Scholar 

  95. Moller JH, Nakib A, Edwards JE (1966) Infarction of the papillary muscle and mitral insufficiency associated with congenital aortic stenosis. Circulation 34: 87–91

    Google Scholar 

  96. Monroe RG, Gamble WJ, LaFarge CG, Benoualid H, Weisul J (1975) Transmural coronary venous O2 saturations in normal and isolated dog hearts. Am J Physiol 228: 318–324

    Google Scholar 

  97. Mori H, Chujo M, Haruyama S, Sakamoto H, Shinozaki Y, Uddin-Mohamed M, Iida A, Nakazawa H (1995) Local continuity of myocardial blood flow studied by monochromatic synchrotron radiation-excited x-ray fluorescence spectrometry. Circulation Research, In Press

  98. Mudge GH Jr, Goldberg S, Gunther S, Mann T, Grossman W (1979) Comparison of metabolic and vasoconstrictor stimuli on coronary vascular resistance in man. Circulation 59: 544–550

    Google Scholar 

  99. Murray PA, Baig H, Fishbein MC, Vatner SF (1979) Effects of experimental right ventricular hypertrophy on myocardial blood flow in conscious dogs. J Clin Invest 64: 421–427

    Google Scholar 

  100. Najafi H, Henson D, Dye WS, Javid H, Junter JA, Callaghan R, Eisenstein R, Julian OC (1969) Left ventricular hemorrhagic necrosis. Ann Thorac Surg 7: 550–561

    Google Scholar 

  101. Olsen EGJ (1972) Pathology of primary cardiomyopathies. Postgrad Med J 48: 732–737

    Google Scholar 

  102. Pantely GA, Bristow JD, Swenson LJ, Ladley HD, Johnson WB, Anselone CG (1985) Incomplete coronary vasodilation during myocardial ischemia in swine. Am J Physiol 249 (Heart Circ Physiol 18): H638–H647

    Google Scholar 

  103. Pasyk S, Bloor CM, Khouri EM, Gregg DE (1971) Systemic and coronary effects of coronary artery occlusion in the unanesthetized dog. Am J Physiol 220: 646–654

    Google Scholar 

  104. Rabbany SY, Kresh JY, Noordergraaf A. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol 257 (Heart Circ Physiol 26): H357–H364

  105. Reimer KA, Lowe JT, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs. duration of coronary occlusion in dogs. Circulation 56: 786–794

    Google Scholar 

  106. Sarajas HSS (1964) Myocardial damage induced by immersion hypothermia. Am J Cardiol 13: 355–366

    Google Scholar 

  107. Schaper W, Remijsen P, Xhonneux R (1969) The size of myocardial infarction after experimental coronary artery ligation. Z Kreislaufforsch 58: 904–909

    Google Scholar 

  108. Scharf SM, Thames MD, Sargant RK (1974) Transmural myocardial infarction after exposure to carbon monoxide in coronary-artery disease. New Engl J Med 291: 85–86

    Google Scholar 

  109. Schenk EA, Moss AJ (1966) Cardiovascular effects of sustained norepinephrine infusions. II. Morphology. Circ Res 18: 605–615

    Google Scholar 

  110. Schwarz F, Flameng W, Schaper J, Langebartels F, Sesto M, Hehrlein F, Schlepper M (1978) Myocardial structure and function in patients with aortic valve disease and their relation to postoperative results. Am J Cardiol 41: 661–669

    Google Scholar 

  111. Sestier FJ, Mildenberger RR, Klassen GA (1978) Role of autoregulation in spatial and temporal perfusion heterogeneity of canine myocardium. Am J Physiol 235 (Heart Circ Physiol 4): H64–H71

    Google Scholar 

  112. Sevitt S (1970) Reflections on some problems in the pathology of trauma. J Trauma 10: 962–973

    Google Scholar 

  113. Smith RP, Tomlinson BE (1954) Subendocardial haemorrhages associated with intracranial lesions. J Pathol Bacteriol 68: 327–334

    Google Scholar 

  114. Spagnuolo M, Kloth H, Taranta A, Doyle E, Pasternack B (1971) Natural history of rheumatic aortic regurgitation. Criteria predictive of death, congestive heart failure, and angina in young patients. Circulation 44: 368–380

    Google Scholar 

  115. Stapleton DD, van Beek JHGM, Roger S, Baskin DG, Bassingthwaighte JB (1988) Regional myocardial flow heterogeneity assessed with 2-Iododesmethylimipramine. Circulation 78 (Suppl II): 405

    Google Scholar 

  116. Steenbergen C, Deleeuw G, Barlow C, Chance B, Williamson JR (1977) Heterogeneity of the hypoxic state in perfused rat heart. Circ Res 41: 606–615

    Google Scholar 

  117. Taber RE, Morales AR, Fine G (1967) Myocardial necrosis and the postoperative low cardiac output syndrome. Ann Thorac Surg 4: 12–28

    Google Scholar 

  118. Unverferth DV, Magorien RD, Lewis RP, Leier CV (1983) The role of subendocardial ischemia in perpetuating myocardial failure in patients with nonischemic congestive cardiomyopathy. Am Heart J 105: 176–179

    Google Scholar 

  119. VanBavel E, Spaan JAE (1992) Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ Res 71: 1200–1212

    Google Scholar 

  120. Weiss HR (1979) Regional oxygen consumption and supply in the dog heart: effect of atrial pacing. Am J Physiol 236 (Heart Circ Physiol 5): H231–H237

    Google Scholar 

  121. Weiss HR, Neubauer JA, Lipp JA, Sinha AK (1978) Quantitative determination of regional oxygen consumption in the dog heart. Circ Res 42: 394–401

    Google Scholar 

  122. Weiss HR, Sinha AK (1978) Regional oxygen saturation of small arteries and veins in the canine myocardium. Circ Res 42: 119–126

    Google Scholar 

  123. Wolpers HG, Hoeft A, Korb H, Lichtlen PR, Hellige G (1990) Heterogeneity of myocardial blood flow under normal condition and its dependence on arterial PO2. Am J Physiol 258 (Heart Circ Physiol 27): H549–H555

    Google Scholar 

  124. Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F (1993) In vivo observation of subendocardial microvessels of the beating porcine heart using a needleprobe videomicroscope with a CCD camera. Circ Res 72: 939–946

    Google Scholar 

  125. Yellon DM, Hearse DJ, Crome R, Wyse RKH (1983) Temporal and spatial characteristics of evolving cell injury regional myocardial ischemia in the dog: The “border zone” controversy. J Am Coll Cardiol 2: 661–670

    Google Scholar 

  126. Yipintsoi T, Dobbs WA, Jr, Scanlon PD, Knopp TJ, Bassingthwaighte JB (1973) Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 33: 573–587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited Contributions to the Symposium “Regulation of coronary blood flow”, held at the XV. World Congress of the International Society for Heart Research in Prague 1995

Supported in part by Program Project Grant HL 25847 from the National Institute of Health

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, J.I.E. Heterogeneity of myocardial blood flow. Basic Res Cardiol 90, 103–111 (1995). https://doi.org/10.1007/BF00789440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00789440

Key words

Navigation