Skip to main content
Log in

Oscillating haemolymph ‘circulation’ and discontinuous tracheal ventilation in the giant silk mothAttacus atlas L.

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    In the mothAttacus atlas (Saturniidae) an oscillating haemolymph ‘circulation’ and its coordination with tracheal ventilation are described. Periodic heartbeat reversal, intermittent backward haemolymph flow through the perineural sinus and two different superimposed modes of abdominal movements are analyzed by means of contact thermography and photocell measurements.

  2. 2.

    Intraperiodic fluctuations and age dependent alterations in heartbeat frequency and duration of pulse periods are discussed with respect to changes in haemolymph volume and haemocoele capacity.

  3. 3.

    The frontal aortal sac shows transport activity only during the forward pulse period of the heart; during the backward pulse period the amount of haemolymph in the head is reduced. The aorta continues to pulse in the freshly severed head.

  4. 4.

    The expiratory air flow at the spiracles and spiracular valve closing were investigated. In the anterior part of the body expiration occurs slowly as a consequence of haemolymph accumulation during the forward pulse period of the heart, while inspiration takes place as a consequence of removal of haemolymph from the anterior body into the abdomen during a backward pulse period. When most haemolymph is accumulated in the abdomen, expiration of the abdominal tracheal system is accomplished by bouts of abdominal peristaltic movements. The latter are aided by coordinated closing of the abdominal spiracular valves.

  5. 5.

    Transient haemolymph pressure increase by ventilatory movements is probably restricted to the abdomen by a septum and valve in the anterior abdomen. This compartmentation of the adult lepidopteran body combined with haemolymph oscillation is suggested to be a principle advantage in optimal utilization of a small haemolymph quantity with regard to tracheal ventilation in flight-adapted, light-weight construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PNS :

perineural sinus

C-method :

conduction-convection measurement

T-method :

temperature measurement

References

  • Behrends J (1935) Über die Entwicklung des Lakunen-, Ader- und Tracheensystems während der Puppenruhe im Flügel der MehlmotteEphestia kühniella Zeller. Z Morphol Ökol Tiere 30:573–596

    Google Scholar 

  • Brocher F (1920 Étude éxpérimentale sur le fonctionnement du vaisseau dorsal et sur la circulation du sang chez les insectes. III. LeSphinx convolvuli. Arch Zool Exp Gen 60:1–45

    Google Scholar 

  • Brocher F (1931) Le méchanisme de la respiration et celui de la circulation du sang chez les insectes. Arch Zool Exp Gen 74:25–32

    Google Scholar 

  • Brockway AP, Schneiderman HA (1967) Strain-gauge transducer studies on intratracheal pressure and pupal length during discontinuous respiration in diapausing silkworm pupae. J Insect Physiol 13:1413–1451

    Google Scholar 

  • Buck J (1958) Cyclic CO2 release in insects. IV. A theory of mechanism. Biol Bull 114:118–140

    Google Scholar 

  • Cottrell CB (1962) The imaginal ecdysis of blowflies. Observations on the hydrostatic mechanism involved in digging and expansion. J Exp Biol 39:431–448

    Google Scholar 

  • Dubuisson M (1924a) Observations sur la ventilation trachéenne des insectes. I. La ventilation trachéenne chez un Acridien. Bull Acad R Belg, Cl Sci, Série 5, 10:375–391

    Google Scholar 

  • Dubuisson M (1924b) Observations sur le mécanisme de la ventilation trachéenne chez les insectes. II. Bull Acad R Belg, Cl Sci, Série 5, 10:635–656

    Google Scholar 

  • Evans AC (1935) Some notes on the biology and physiology of the sheep blowfly,Lucilia sericata Meig. Bull Entomol Res 26:115–122

    Google Scholar 

  • Fraenkel G (1932) Untersuchungen über die Koordination von Reflexen und automatisch-nervösen Rhythmen bei Insekten. III. Das Problem des gerichteten Atemstroms in den Tracheen der Insekten. Z Vergl Physiol 16:418–443

    Google Scholar 

  • Gerould JH (1938) Structure and action of the heart ofBombyx mori and other insects. Acta Zool (Stockh) 19:297–352

    Google Scholar 

  • Heller J, Sweichowska W (1948) Investigations of insect metamorphosis. XIII. The macroscopical aspect of metamorphosis. Zool Pol 4:73–82

    Google Scholar 

  • Hessel JH (1969) The comparative morphology of the dorsal vessel and accessory structures of the Lepidoptera and its phylogenetic implications. Ann Entomol Soc Am 62:353–370

    Google Scholar 

  • Jones JC (1977) The circulatory system of insects. Thomas, Springfield, IL

    Google Scholar 

  • Kestler P (1980) Saugventilation verhindert bei Insekten die Wasserabgabe aus dem Tracheensystem. Verh Dtsch Zool Ges 1980:306

    Google Scholar 

  • Krogh A (1920) Studien über Tracheenrespiration. IL. Über Gasdiffusion in den Tracheen. Pflueger's Arch Gesamte Physiol Menschen Tiere 179:95–120

    Google Scholar 

  • Lee MO (1925) On the mechanism of respiration in certain Orthoptera. J Exp Zool 41:125–154

    Google Scholar 

  • Levy RI, Schneiderman HA (1958) An experimental solution to the paradox of discontinuous respiration in insects. Nature 182:491–493

    Google Scholar 

  • Levy RI, Schneiderman HA (1966) Discontinuous respiration in insects. II. The direct measurement and significance of changes in tracheal gas composition during the respiratory cycle of silkworm pupae. J Insect Physiol 12:83–104

    Google Scholar 

  • Masera E (1933) Il ritmo del vaso pulsante nelBombyx mori. Riv Biol 15:225–234

    Google Scholar 

  • Miller PL (1974) Respiration — aerial gas transport. In: Rockstein M (ed) The physiology of insecta, vol VI. Academic Press, New York San Francisco London, pp 345–402

    Google Scholar 

  • Moreau R (1974) Variations de la pression interne au cours de l'émergence et de l'expansion des ailes chezBombyx mori etPieris brassicae. J Insect Physiol 20:1475–1480

    Google Scholar 

  • Moreau R, Lavenseau L (1975) Rôle des organes pulsatiles thoraciques et du coeur pendant l'émergence et l'expansion des ailes des Lépidoptères. J Insect Physiol 21:1531–1534

    Google Scholar 

  • Nicolson SW (1976) Diuresis in the cabbage white butterfly,Pieris brassicae: fluid secretion by the Malpighian tubules. J Insect Physiol 22:1347–1356

    Google Scholar 

  • Poyarkoff E (1910) Recherches histologiques sur la métamorphose d'un coléoptère. Arch Anat Microsc 12:333–474

    Google Scholar 

  • Punt A (1950) The respiration of insects. Physiologia Comp Oecol 2:59–74

    Google Scholar 

  • Queinnec Y, Campan R (1972) Heart beat frequency variations in the mothMamestra brassicae during ontogeny. J Insect Physiol 18:1739–1744

    Google Scholar 

  • Queinnec Y, Campan M (1975) Influence of sexual maturation on cardiac activity and reactivity ofCalliphora vomitoria. I Cardiac activity. J Physiol (Paris) 70:457–466

    Google Scholar 

  • Richards AG (1963) The ventral diaphragm of insects. J Morphol 113:17–47

    Google Scholar 

  • Richter K (1973) Struktur und Funktion der Herzen wirbelloser Tiere. Zool Jahrb Abt Allg Zool Physiol 77:477–668

    Google Scholar 

  • Roussel J-P (1973) Variation du rythme cardiaque des insectes en fonction du développement. CR 24. Congr Nat Soc Sav, Sect Sci 3:105–118

    Google Scholar 

  • Tirelli M (1935) Osservazione sul ritmo e sul mechanismo delle inversione circulatorie durante la metamorphosi diSaturnia pavonia major. Arch Zool Ital 22:297–307

    Google Scholar 

  • Wasserthal LT (1975) Herzschlag-Umkehr bei Insekten und die Entwicklung der imaginalen Herzrhythmik. Verh Dtsch Zool Ges 1974:95–99

    Google Scholar 

  • Wasserthal LT (1976) Heartbeat reversal and its coordination with accessory pulsatile organs and abdominal movements in Lepidoptera. Experientia 32:577–578

    Google Scholar 

  • Wasserthal LT (1978) Periodische Herzschlagumkehr beim RiesenseidenspinnerAttacus lorquinii. Inst Wiss Film, Göttingen

    Google Scholar 

  • Wasserthal LT (1980) Oscillating haemolymph ‘circulation’ in the butterfly,Papilio machaon L. revealed by contact thermography and photocell measurements. J Comp Physiol 139:145–163

    Google Scholar 

  • Wasserthal LT, Wasserthal W (1977) Innervation of heart and alary muscles inSphinx ligustri L. (Lepidoptera). Cell Tissue Res 184:467–486

    Google Scholar 

  • Webb JE (1945) On the respiratory mechanism ofMelophagus ovinus L (Dipt). Proc Zool Soc (Lond) 115:218–250 + 5 plates

    Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology. 7th ed. Chapman and Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserthal, L.T. Oscillating haemolymph ‘circulation’ and discontinuous tracheal ventilation in the giant silk mothAttacus atlas L.. J Comp Physiol B 145, 1–15 (1981). https://doi.org/10.1007/BF00782587

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00782587

Keywords

Navigation