Skip to main content
Log in

Conformational changes in the chromatin of the brain of developing rats and its modulation by zinc chloride

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Conformational changes in the chromatin of the brain were studied during the development of the rat (3-, 14-and 30-day old) using microccoccal nuclease (MCN) and DNase I. The rate and extent of digestion of chromatin by MCN is not altered during development. However, pre-incubation of slices of the cerebral cortex with ZnCl2 increases the initial rate of digestion by MCN by 2–3-fold, and also enhances the production of monomer DNA. The rate and extent of digestion of chromatin by DNase I is greater in an early stage of development. The initial rate of digestion by DNase I is stimulated by 3–4-fold after ZnCl2 treatment. These data show that changes occur in the conformation of chromatin, particularly in the internucleosomal region of brain cells as they pass from dividing to the non-dividing state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradbury E. M., 1977. In: The Organization and Expression of Eukaryotic Genome (Bradbury E. M. & Javaherian K., eds.) pp. 83–98. Academic Press, New York.

    Google Scholar 

  2. Thomas J. O., 1977. In: International Review of Biochemistry (Clarke B. F. C., ed.) Vol. 17, Biochemistry of Nucleic Acids II, University Park Press, Baltimore, U.S.A.

    Google Scholar 

  3. Kornberg R. D., 1977. Ann. Rev. Biochem. 46: 931–954.

    Google Scholar 

  4. McGhee J. D. & Felsenfeld G., 1980. Ann. Rev. Biochem. 49: 1115–1156.

    Google Scholar 

  5. Lutter L. C., 1978. Nucl. Acids Res. 6: 41–56.

    Google Scholar 

  6. Prunell A. & Kornberg R. D., 1978. Cold Spring Harbor Symp. Quant. Biol. 42: 103–108.

    Google Scholar 

  7. Garel A. & Axel R., 1976. Proc. Natl. Acad. Sci. U.S.A. 73: 3966–3970.

    Google Scholar 

  8. Weintraub H. & Groudine M., 1976. Science 93: 848–858.

    Google Scholar 

  9. Tanphaichitr N. & Chalkley R., 1976. Biochemistry 15: 1610–1614.

    Google Scholar 

  10. Ord M. G. & Stocken L. A., 1978. Biochem. J. 176: 615–618.

    Google Scholar 

  11. Supakar P. C. & Kanungo M. S., 1982. Biochem. Int. 4: 679–687.

    Google Scholar 

  12. Supakar P. C. & Kanungo M. S., 1982. Biochemistry Int. 5: 381–388.

    Google Scholar 

  13. Hewish D. R. & Burgoyne L. A., 1973. Biochem. Biophys. Res. Commun. 52: 504–510.

    Google Scholar 

  14. Panyim S., Bield D. & Chalkley R., 1973. J. Biol. Chem. 246: 4215.

    Google Scholar 

  15. Loening V. E., 1967. Biochem. J. 102: 251–257.

    Google Scholar 

  16. Maniatis T., Jeffrey A. & Van deSande H., 1975. Biochemistry 14: 3787–3794.

    Google Scholar 

  17. Sollner-Webb B. & Felsenfeld G., 1977. Cell 10: 537–547.

    Google Scholar 

  18. Candido E. P. M., Reeves R. & Davie J. R., 1978. Cell 14: 105–113.

    Google Scholar 

  19. Simpson R. T., 1978. Cell 13: 691–699.

    Google Scholar 

  20. Weisbrod S., Groudine M. & Weintraub H., 1980. Cell 19: 289–301.

    Google Scholar 

  21. Tanphaichitr N., Moore K. G., Granner D. K. & Chalkley R., 1976. J. Cell Biol. 69: 43–50.

    Google Scholar 

  22. Balhorn R., Chalkley R. & Granner D., 1972. Biochemistry 11: 1094–1098.

    Google Scholar 

  23. Paulson J. R. & Taylor S. S., 1982. J. Biol. Chem. 257: 6064–6072.

    Google Scholar 

  24. Romhanyi Y., Antoni S. F., Nikolics K., Meszaros G. & Farago A., 1982. Biochim. Biophys. Acta 701: 57–62.

    Google Scholar 

  25. Ajiro K., Borun T. W. & Cohen L. H., 1981. Biochemistry 20: 1445–1454.

    Google Scholar 

  26. Wilkinson D. J., Shinde B. G. & Hohmann P., 1982. J. Biol. Chem. 257: 1247–1252.

    Google Scholar 

  27. Dolby T. W., Belmount A., Borun T. W. & Nicolini C. J., 1981. Cell Biol. 89: 78–85.

    Google Scholar 

  28. Supakar P. C. & Kanungo M. S., 1981. Biochem. Biophys. Res. Commun. 100: 73–78.

    Google Scholar 

  29. Dimitriadis C. J. & Tata J. R., 1980. Biochem. J. 187: 467–477.

    Google Scholar 

  30. Mathis D. T., Oudet P., Wasylyk B. & Chambon P., 1978. Nucl. Acids Res. 5: 3523–3547.

    Google Scholar 

  31. Kanungo M. S., 1975. J. Theor. Biol. 53: 253–261.

    Google Scholar 

  32. Kanungo M. S., 1980. Biochemistry of Ageing, Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supakar, P.C., Kanungo, M.S. Conformational changes in the chromatin of the brain of developing rats and its modulation by zinc chloride. Mol Biol Rep 9, 253–257 (1984). https://doi.org/10.1007/BF00775357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00775357

Keywords

Navigation