Skip to main content
Log in

Petrov classification of vacuum axisymmetric space-times

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using the null bivector approach, Petrov classification is studied for axisymmetric vacuum space-times with orthogonally transitive Killing vectors. It is shown that the equation on which the classification is based is biquadratic. This excludes that any such space-time can be type III. The only type-N manifolds are the radiative solutions considered by Hoffman. Van Stockum solutions are the most general type-II solutions. Degenerate Weyl solutions and Kinnersley solutions cover typeD. Stationary solutions with functional dependence of the potential are then examined. It is found that, except for special cases, Papapetrou and Lewis solutions are algebraically general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr, R. P. (1963).Phys. Rev. Lett.,11, 2384.

    Google Scholar 

  2. Kinnersley, W. (1969).J. Math. Phys.,10, 1195.

    Google Scholar 

  3. Hoffman, R. B. (1969).J. Math. Phys.,10, 953.

    Google Scholar 

  4. Petrov, A. Z. (1969).Einstein Spaces (Pergamon, New York).

    Google Scholar 

  5. Catenacci, R., and Salmistraro, F. (1978).J. Math. Phys.,19, 2047.

    Google Scholar 

  6. Flaherty, E. J. (1976).Lecture Notes in Physics, 46 (Springer-Verlag, Berlin).

    Google Scholar 

  7. Debney, G. C. (1971).J. Math. Phys.,12, 1088.

    Google Scholar 

  8. Papapetrou, A. (1966).Ann. Inst. Henri Poincaré,A4, 86.

    Google Scholar 

  9. Ernst, F. J. (1974).J. Math. Phys.,15, 1409.

    Google Scholar 

  10. Papapetrou, A. (1953).Ann. Phys. (Leipzig),12, 309.

    Google Scholar 

  11. Ernst, F. J. (1968).Phys. Rev.,167, 1175.

    Google Scholar 

  12. Kramer, D., and Neugebauer, G. (1969).Ann. Phys. (Leipzig),24, 62.

    Google Scholar 

  13. Kinnersley, W. (1975). InGeneral Relativity and Gravitation, eds. Shaviv, G., and Rosen, J. (Keter Pub. House, Jerusalem).

    Google Scholar 

  14. Kundu, P. (1979).Phys. Rev. Lett.,42, 416.

    Google Scholar 

  15. Weyl, H. (1917).Ann. Phys. (Leipzig),54, 117.

    Google Scholar 

  16. Levi Civita, T. (1917).Rend. Acad. Lincei,26, 307.

    Google Scholar 

  17. Levi Civita, T. (1918).Rend. Acad. Lincei,27, 3/183/220/240/343.

    Google Scholar 

  18. Levi Civita, T. (1919).Rend. Acad. Lincei,28, 3/101.

    Google Scholar 

  19. Ehlers, J., and Kundt, W. (1962). InGravitation: An Introduction to Current Research, ed. Witten, L. (Wiley, New York).

    Google Scholar 

  20. Kinnersley, W., and Walker, M. (1970).Phys. Rev. D,2, 1359.

    Google Scholar 

  21. Morisetti, S. (1978). Unpublished thesis, Department of Physics University of Milano.

  22. Levy, H. (1969).Nuovo Cimento,56B, 253.

    Google Scholar 

  23. Stockum, van, W. J. (1937).Proc. R. Soc. Edinburgh,A57, 135.

    Google Scholar 

  24. Lewis, T. (1932).Proc. R. Soc. London,136, 176.

    Google Scholar 

  25. Reina, C. (1979).J. Math. Phys.,20, 1303.

    Google Scholar 

  26. Benza, V., Morisetti, S., and Reina, C. (1979).Nuovo Cimento,50B, 1.

    Google Scholar 

  27. Huffman, R. B. (1969).Phys. Rev.,182, 1361.

    Google Scholar 

  28. Sneddon, G. E. (1975).J. Math. Phys.,16, 740.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morisetti, S., Reina, C. & Treves, A. Petrov classification of vacuum axisymmetric space-times. Gen Relat Gravit 12, 619–632 (1980). https://doi.org/10.1007/BF00758942

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00758942

Keywords

Navigation