Skip to main content
Log in

Non-equilibrium grain-boundary segregation in austenitic alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The theory of non-equilibrium grain-boundary segregation is discussed with particular reference to recent ideas and data relating to boron grain-boundary segregation in Type 316 austenitic steel. The kinetics of the non-equilibrium grain-boundary segregation process are considered in depth and a model is developed which, it is hoped, will more realistically describe the magnitude and extent of the process. Reasonable agreement is found between the predictions of the model and experimental evidence for non-equilibrium boron, aluminium and titanium segregation to grain boundaries in austenitic steels. The model predicts, generally, that elements with large misfits with the matrix atoms will segregate most. Larger grain sizes lead to greater grain-boundary segregation. Also, the two critical heat-treatment parameters in non-equilibrium segregation are the solution-treatment temperature and the cooling rate from the solution-treatment temperature. Predictions of the worst combinations of these parameters for maximum non-equilibrium segregation to grain boundaries in austenitic steels are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Seah andE. D. Hondros,Int. Met. Rev. 222 (1977) 262.

    Google Scholar 

  2. E. D. Hondros andD. Mclean, “Surface Phenomena of Metals” Vol.28 (London Society of Chemical Industry, London, 1968) p. 39.

    Google Scholar 

  3. M. Guttemann,Metel Sci. 10 (1976) 337.

    Google Scholar 

  4. D. Mclean, “Grain Boundaries in Metals” (Clarendon Press, Oxford, 1957) p. 131.

    Google Scholar 

  5. M. P. Seah,Acta. Met. 25 (1977) 345.

    Google Scholar 

  6. K. T. Aust, S. J. Armijo, E. F. Koch andJ. A. Westbrook,Trans. Amer. Soc. Met. 60 (1967) 360.

    Google Scholar 

  7. T. R. Anthony,Acta Met. 17 (1969) 603.

    Google Scholar 

  8. K. T. Aust, R. E. Hanneman, P. Niessen andJ. H. Westbrook,ibid. 16 (1968) 291.

    Google Scholar 

  9. T. M. Williams, A. M. Stoneham andD. R. Harries,Metal Sci. 10 (1976) 14.

    Google Scholar 

  10. D. R. Harries andA. D. Marwick,Phil. Trans. Roy. Soc. A295 (1980) 197.

    Google Scholar 

  11. A. H. Cottrell, “An Introduction to Metallurgy”, (Edward Arnold, London, 1967) p. 345.

    Google Scholar 

  12. B. L. Eyre andD. M. Maher, AERE Report R-6618, Ukaea, Harwell, UK, December, 1970.

    Google Scholar 

  13. R. G. Faulkner, T. C. Hopkins andK. Norrgård,X-ray Spectrometry 6 (1977) 73.

    Google Scholar 

  14. R. G. Faulkner andB. J. E. Rosborg, Studsvik Energiteknik, Sweden, unpublished work, 1978.

  15. R. G. Faulkner andK. Norrgård,X-ray Spectrometry 7 (1978) 184.

    Google Scholar 

  16. R. G. Faulkner andJ. Caisley,Metal Sci. 11 (1977) 200.

    Google Scholar 

  17. M. E. Warga andC. Wells,J. Metals 5 (1953) 1463.

    Google Scholar 

  18. S. H. Moll andR. E. Ogilvie,Trans. Met. Soc. AIME 215 (1959) 613.

    Google Scholar 

  19. R. A. Swalin andA. Martin,Met. Trans. AIME 206 (1956) 567.

    Google Scholar 

  20. F. S. Buffington, K. Hirano, M. Cohen,Acta Met. 9 (1961) 434.

    Google Scholar 

  21. J. R. MacEwan, J. U. MacEwan andL. Yaffe,Canadian J. Chem. 37 (1959) 1623.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, R.G. Non-equilibrium grain-boundary segregation in austenitic alloys. J Mater Sci 16, 373–383 (1981). https://doi.org/10.1007/BF00738626

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738626

Keywords

Navigation