Skip to main content
Log in

Diffusion-enhanced resonance energy transfer shows that linker-DNA accessibility decreases during salt-induced chromatin condensation

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Accessibility of linker-DNA chromatin during salt-induced condensation of chicken erythrocytes chromatin was studied by diffusion-enhanced resonance energy transfer. A terbium complex was covalently bound to linker-DNA and fluorescein molecules bound to latex particles with diameters ranging from 14 to 2470 nm were used as acceptor. The accessibility of linker-DNA to molecules with a diameter superior to 14 nm diminished during condensation, but for an acceptor diameter of 14 nm or less, no accessibility variation was observed. It can be concluded that (1) linker-DNA is located inside the fiber when chromatin is in the condensed state, (2) chromatin condensation can prevent the approach to DNA due to steric hindrance, (3) salt-induced chromatin condensation is a gradual process, and (4) condensed chromatin models containing a central cavity are more likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTPA:

diethylene tetramine pentacetic acid

FDL-DERET:

fast diffusion limit of diffusion-enhanced resonance energy transfer

Pso-Tb:

psoralen-terbium complex

PAS:

paraamino salicylic acid

TREF:

time-resolved emission of fluorescence

References

  1. G. Reuter, M. Giarre, J. Farah, J. Gausz, A. Spierer, and P. Spierer (1990)Nature 344, 219–223.

    Google Scholar 

  2. J. C. Hansen and A. P. Wolffe (1992)Biochemistry 31, 7977–7988.

    Google Scholar 

  3. R. T. Kamakaka and J. O. Thomas (1990)EMBO J. 9, 3997–4006.

    Google Scholar 

  4. D. L. Bates., G. Butler, C. Pearson, and J. O. Thomas (1981)Eur. J. Biochem. 119, 469–476.

    Google Scholar 

  5. J. Zlatanova (1990)TIBS 15, 273–276.

    Google Scholar 

  6. P. R. Selvin (1995)Methods in Enzymol. 246, 300–334.

    Google Scholar 

  7. A. Oser, M. Collasius, and G. Valet (1990)Anal. Biochem. 191, 295–301.

    Google Scholar 

  8. A. Oser, W. K. Roth, and G. Valet (1988)Nucleic Acids Res. 16, 1181–1196.

    Google Scholar 

  9. R. Marquet, P. Colson, A. M. Matton, and C. Houssier (1988)J. Biomol. Struct. Dyn. 5, 839–857.

    Google Scholar 

  10. D. D. Thomas, W. F. Carlsen, and L. Stryer (1978)Proc. Natl. Acad. Sci. USA 75, 5746–5750.

    Google Scholar 

  11. T. G. Wensel, C. H. Chang, and C. F. Meares (1985)Biochemistry 24, 3060–3069.

    Google Scholar 

  12. T. G. Wensel and C. F. Meares (1983)Biochemistry 22, 6247–6254.

    Google Scholar 

  13. G. D. Cimino, H. B. Gamper, S. T. Isaacs, and J. E. Hearst (1985)Annu. Rev. Biochem. 54, 1151–1193.

    Google Scholar 

  14. W. Zhen, O. Buchardt, H. Nielsen, and P. E. Nielsen (1986)Biochemistry 25, 6598–6603.

    Google Scholar 

  15. G. P. Wiesehahn, J. E. Hyde, and J. E. Hearst (1977)Biochemistry 16, 925–932.

    Google Scholar 

  16. R. R. Sinden and P. J. Hagerman (1984)Biochemistry 23, 6299–6303.

    Google Scholar 

  17. P. R. Selvin and J. E. Hearst (1994)Proc. Natl. Acad. Sci. USA 91, 10024–10028.

    Google Scholar 

  18. G. Stein and E. Wurzberg (1975)J. Chem. Phys. 62, 208–213.

    Google Scholar 

  19. L. E. Morrison (1988)Anal. Biochem. 174, 101–120.

    Google Scholar 

  20. P. W. Atkins (1986)Physical Chemistry, Oxford University Press Oxford.

    Google Scholar 

  21. D. M. Himmelblau (1970)Process Analysis by Statistical Methods, Wiley, New York.

    Google Scholar 

  22. R. Labarbe, S. Flock, P. Colson, and C. Houssier (1994)J. Fluoresc. 4, 315–318.

    Google Scholar 

  23. W. Saenger (1984)Principles of Nucleic Acid Structure, Springer Verlag, New York.

    Google Scholar 

  24. D. C. Rau, B. Lee, and V. A. Parsegian (1984)Proc. Natl. Acad. Sci. USA 81, 2621–2625.

    Google Scholar 

  25. A. P. Lyubartsev and L. Nordenskiold (1995)J. Phys. Chem. 99, 10373–10382.

    Google Scholar 

  26. J. Widom (1986)J. Mol. Biol. 190, 411–424.

    Google Scholar 

  27. J. T. Finch and A. Klug (1976)Proc. Natl. Acad. Sci. USA 73, 1897–1901.

    Google Scholar 

  28. F. Thoma, T. Koller, and A. Klug (1979)J. Cell Biol. 83, 403–427.

    Google Scholar 

  29. J. D. McGhee, D. C. Rau, E. Charney, and G. Felsenfeld (1980)Cell 22, 87–96.

    Google Scholar 

  30. P. J. G. Butler (1984)EMBO J. 3, 2599–2604.

    Google Scholar 

  31. S. P. Williams, B. D. Athey, L. J. Muglia, R. S. Schappe, A. H. Gough, and J. P. Langmure (1986)Biophys. J. 49, 233–248.

    Google Scholar 

  32. M. H. J. Koch, Z. Sayers, A. M. Michon, P. Sicre, R. Marquet, and C. Houssier (1989)Eur. Biophys. J. 17, 245–255.

    Google Scholar 

  33. C. L. F. Woodcock, L. L. Y. Frado, and J. B. Rattnerf (1984)J. Cell Biol. 99, 42–52.

    Google Scholar 

  34. J. Zlatanova, S. Leuba, H. G. Yang, C. Bustamante, and K. E. Van Holde (1994)Proc. Natl. Acad. Sci. USA 91, 5277–5280.

    Google Scholar 

  35. B. Lewin (1985)Genes, Wiley, New York.

    Google Scholar 

  36. M. Noll and R. D. Kornberg (1977)J. Mol. Biol. 109, 393–404.

    Google Scholar 

  37. G. Sarlet, S. Muller, and C. Houssier (1992)J. Biomol. Struct. Dyn. 10, 35–47.

    Google Scholar 

  38. V. Graziano, S. E. Gerchman, D. K. Schneider, and V. Ramakrishnan (1994)Nature 368, 351–354.

    Google Scholar 

  39. S. Leuba, H., J. Zlatanova, and K. E. Van Holde (1994)J. Mol. Biol. 235, 871–880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labarbe, R., Mignon, S., Flock, S. et al. Diffusion-enhanced resonance energy transfer shows that linker-DNA accessibility decreases during salt-induced chromatin condensation. J Fluoresc 6, 107–118 (1996). https://doi.org/10.1007/BF00732050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732050

Key words

Navigation