Skip to main content
Log in

Glycolipids and myelin proteins in human oligodendrogliomas

  • Papers Dedicated To Dr Sen-Itiroh Hakomori
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We studied myelin proteins and glycolipids in 24 human oligodendrogliomas (16 pure, eight mixed), including two grade I, 13 grade II, five grade III, and four grade IV Tumours with a 1b ganglioside content (GD1b, GT1b and GQ1b) over 30% of total gangliosides occur more frequently in the WHO grade I II and (47%) and grade III (40%) than in the grade IV (25%) group; there was no difference in the amounts of total ganglioside or individual gangliosides between pure and mixed oligodendrogliomas. The presence of 6′-LM1 correlated with higher grades of tumours (χ2 p≃0.02); however, 3′-LM1 and total neolacto-series gangliosides did not correlate with grade. Immunohistochemical studies of oligodendrocyte and myelin markers (GalCer, sulfatide, 2′,3′-cyclic nucleotide phosphodiesterase, myelin basic protein and proteolipid protein) using specific antibodies showed only a very small proportion of tumour cells staining. These data do not support the hypothesis that tumours classified as oligodendrogliomas are derived from mature oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russel DS, Rubinstein LJ (1989)Pathology of Tumors of the Nervous System, Baltimore: Williams & Williams.

    Google Scholar 

  2. Bailey P, Cushing H (1926)A Classification of Tumors of the Glioma Group on a Histogenetic Basis with a Correlated Study of Prognosis. Philadelphia, London, Montreal: Lippincott.

    Google Scholar 

  3. Ogawa H, Sato Y, Takeshita I, Kitamura K (1985)Dev Brain Res 18: 133–41.

    Google Scholar 

  4. Choi BH, Kim RC (1984)Science 223: 407–9.

    Google Scholar 

  5. Herpers MJHM, Budka H (1984)Acta Neuropathol 64: 265–72.

    Google Scholar 

  6. Nakagawa Y, Perentes E, Rubinstein LJ (1986)Acta Neuropathol 72: 15–22.

    Google Scholar 

  7. Jagadha V, Halliday WC, Becker LE (1986)Can J Neurol Sci 13: 307–11.

    Google Scholar 

  8. Kamitani H, Masuzawa H, Sato J, Kanazawa I (1988)J Neurol Sci 83: 219–25.

    Google Scholar 

  9. Kros JM, De Jong AAW, Van Der Kwast TH (1992)J Neuropathol Exp Neurol 51: 186–93.

    Google Scholar 

  10. Bansal R, Pfeiffer SE (1992)J Neurosci Res 32: 309–16.

    Google Scholar 

  11. Myoga A, Taki T, Arai K, Sekiguchi K, Ikeda I, Kurata K, Matsumoto M (1988)Cancer Res 48: 1512–16.

    Google Scholar 

  12. Ledeen RW, Yu RK (1982)Methods Enzymol 83: 139–91.

    Google Scholar 

  13. Sung CC, Pearl DK, Coons SW, Scheithauer BW, Johnson PC, Yates AJ (1994)Cancer 74: 3010–22.

    Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH (1957)J Biol Chem 226: 497–509.

    Google Scholar 

  15. Saito T, Hakomori S-I (1971)J Lipid Res 12: 257–59.

    Google Scholar 

  16. Svennerholm L (1957)Biochim Biophys Acta 24: 604–11.

    Google Scholar 

  17. Miettinen T, Takki-Luukkainen IT (1959)Acta Chem Scand 13: 856–885.

    Google Scholar 

  18. Buehler J, Macher BA (1986)Anal Biochem 158: 283–87.

    Google Scholar 

  19. Li J, Pearl DK, Pfeiffer SE, Yates AJ (1994)J Neurosci Res 39: 148–58.

    Google Scholar 

  20. Kennedy PGE, Watkins BA, Thomas DGT, Noble MD (1987)Neuropathol Appl Neurobiol 13: 327–47.

    Google Scholar 

  21. Sung C-C, Pearl DK, Coons SW, Scheithauer BW, Johnson PC, Zheng M, Yates AJ (1995)Cancer 75: 851–59.

    Google Scholar 

  22. Singh LPK, Pearl DK, Franklin TK, Spring PM, Scheithauer BW, Coons SW, Johnson PC, Pfeiffer SE, Li J, Knott JCA, Yates AJ (1994)Mol Chem Neuropathol 21: 241–57.

    Google Scholar 

  23. Nojiri H, Stroud M, Hakomori S-I (1991)J Biol Chem 266: 4531–37.

    Google Scholar 

  24. Hakomori S (1990)J Biol Chem 265: 18713–16.

    Google Scholar 

  25. Hanai H, Nores GA, MacLeod C, Torres-Mendez C-R, Hakomori S-I (1988)J Biol Chem 263: 10915–21.

    Google Scholar 

  26. Paller AS, Arnsmeier SL, Alvarez-Franco M, Bremer EG (1993)J Invest Dermatol 100: 841–45.

    Google Scholar 

  27. Van Brocklyn J, Bremer EG, Yates AJ (1993)J Neurochem 61: 371–74.

    Google Scholar 

  28. Rabin SJ, Mocchetti I (1995)J Neurochem 65: 347–54.

    Google Scholar 

  29. Yates AJ, Saqr HE, Van Brocklyn J (1995)J Neuro-Oncol 24: 65–73.

    Google Scholar 

  30. Hakomori SI (1981)Annu Rev Biochem 50: 733–64.

    Google Scholar 

  31. Hakomori SI (1985) InMolecular Biology of Tumor Cells (Wahern B, Hammarstrom S, Holm G, Perlmann P, eds) p. 139–156. New York: Raven Press.

    Google Scholar 

  32. Figols J, Iglesias-Rozas JR, Kazner E (1985)Clin Neuropathol 4: 116–20.

    Google Scholar 

  33. Raff MC, Abney ER, Cohen J, Lindsay R, Noble M (1983)J Neurosci 3: 1289–1300.

    Google Scholar 

  34. Li Y, Atashi C, Hayes C, Reap S, Hunt S III, Popko B (1995)J Neurosci Res 40: 189–98.

    Google Scholar 

  35. Choi BH, Kim RC (1985)J Neuroimmunol 8: 215–35.

    Google Scholar 

  36. Min K-W, Scheithauer BW (1994)Ultrastruct Pathol 18: 47–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, C.C., Collins, R., Li, J. et al. Glycolipids and myelin proteins in human oligodendrogliomas. Glycoconjugate J 13, 433–443 (1996). https://doi.org/10.1007/BF00731476

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731476

Keywords

Navigation