Skip to main content
Log in

A 28-kDa cerebral neuropeptide fromManduca sexta: Relationship to the insect prothoracicotropic hormone

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    A 28-kDa peptide from the brain of the tobacco hornworm,Manduca sexta, was purifiedvia HPLC. The peptide copurified with the insect neurohormone, prothoracicotropic hormone (PTTH), through two HPLC columns.

  2. 2.

    Immunocyctochemistry using polyclonal antibodies against the 28-kDa peptide revealed that the peptide was produced in the same protocerebral neurons that produce PTTH. Western blot analysis demonstrated that the 28-kDa peptide and big PTTH are different molecules.

  3. 3.

    A PTTHin vitro bioassay indicated that despite having chromatographic properties similar to those of big PTTH and being produced by the same neurons, the 28-kDa peptide did not have PTTH activity.

  4. 4.

    Amino acid sequence analysis yielded a 27 N-terminal amino acid sequence that had no similarity with known peptides.

  5. 5.

    Immunocytochemical studies revealed that the 28-kDa peptide is present as early as 30% embryonic development and is absent by adult eclosion. This is in contrast to big PTTH, which is expressed throughout theManduca life cycle.

  6. 6.

    These data suggest that the 28-kDa peptide is another secretory phenotype of the lateral neurosecretory cell group III (L-NSC III) which may have functions distinct from those for big PTTH or may act synergistically with big PTTH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agui, N., Westbrook, A. L., McQueen, C. T., Flanagan, T. R., and Bollenbacher, W. E. (1989). Regeneration of the neurohemal terminals for identified cerebral neurosecretory cells in the insect.J. Comp. Neurol. 289337–347.

    Google Scholar 

  • Bartfai, T., Iverfeldt, K., Fisone, G., and Serfozo, P. (1988). Regulation of the release of coexisting neurotransmitters.Annu. Rev. Pharmacol. Toxicol. 28285–310.

    Google Scholar 

  • Bell, R. A., and Joachim, F. G. (1976). Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms.Ann. Entomol. Soc. Am. 69365–373.

    Google Scholar 

  • Blum, H., Beier, H., and Gross, H. J. (1897). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels.Electrophoresis 893–99.

    Google Scholar 

  • Bollenbacher, W. E., and Gilbert, L. I. (1981). Neuroendocrine control of postembryonic development in insects: The prothoracicotropic hormone. InNeurosecretion: Molecules, Cells, Systems (D. S. Farner and K. Lederis, Eds.), Plenum Press, New York, pp. 361–379.

    Google Scholar 

  • Bollenbacher, W. E., Agui, N., Granger, N. A., and Gilbert, L. I. (1979).In vitro activation of insect prothoracic glands by the prothoracicotropic hormone.Proc. Natl. Acad. Sci. USA 765148–5152.

    Google Scholar 

  • Bollenbacher, W. E., and Granger, N. A. (1985). Endocrinology of the prothoracicotropic hormone. InComprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 7 (G. A. Kerkut and L. I. Gilbert, Eds.), Pergamon Press, Oxford, pp. 109–151.

    Google Scholar 

  • Bollenbacher, W. E., O'Brien, M. A., Katahira, E. J., and Gilbert, L. I. (1983) A kinetic analysis of the action of the insect prothoracicotropic hormone.Mol. Cell. Endocrinol. 3227–46.

    Google Scholar 

  • Bollenbacher, W. E., Katahira, E. J., O'Brien, M. A., Gilbert, L. I., Thomas, M. K., Agui, N., and Baumhover, A. H. (1984). Insect prothoracicotropic hormone: Evidence for two molecular forms.Science 2241243–1245.

    Google Scholar 

  • Bondy, C. A., Whitnall, M. H., Brady, L. S., and Gainer, H. (1989). Coexisting peptides in hypothalmic neuroendocrine systems: Some functional implications.Cell. Mol. Neurobiol. 9427–446.

    Google Scholar 

  • Brain, S. D., and Williams, T. J. (1988). Substance P regulates the vasodilatory activity of calcitonin gene-related peptide.Nature 33573–75.

    Google Scholar 

  • Chan-Palay, V. (1987). Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: Coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia.J. Comp. Neurol. 238382–389.

    Google Scholar 

  • Chronwall, B. M., Chase, T. N., and O'Donohue, T. L. (1984). Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalmic neurons.Neurosci. Lett. 52213–217.

    Google Scholar 

  • Davila, J.-C., De La Calle, A., Guitierrez, A., Megias, M., Andreu, M. J., and Guirado, S. (1991). Distribution of neuropeptide Y (NPY) in the cerebral cortex of the lizardsPsammodromus algirus and Podarcis hispanica: Co-localization of NPY, somatostatin, and GABA.J. Comp. Neurol. 308397–408.

    Google Scholar 

  • Engvall, E., and Perlman, P. (1971). Enzyme-linked immunosorbant assay (ELISA): Quantitative assay of immunoglobulin G.Immunochemistry 8 871–874.

    Google Scholar 

  • Fisher, J. M., Soussin, W., Newcomb, R., and Scheller, R. H. (1988). Multiple neuropeptides from a common precursor are differentially packaged and transported.Cell 54813–822.

    Google Scholar 

  • Galfre, G., and Milstein, C. (1981). Preparation of monoclonal antibodies: Strategies and procedures. InMethods in Enzymology, Vol. 73 (J. J. Langone and H. Van Vunakis, Eds.), Academic Press, Orlando, FL, pp. 3–46.

    Google Scholar 

  • Gibbins, I. L., Furness, J. B., Costa, M., MacIntyre, I., Hillyard, C. J., and Girgis, S. (1985). Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous vascular and visceral sensory neurons of guinea pigs.Neurosci. Lett. 57125–130.

    Google Scholar 

  • Gray, R. S. (1992).Multiple peptide expression by the prothoracicotropic hormone producing neurons, the L-NSCIII, in the tobacco hornworm,Manduca sexta. Ph.D. Dissertation, University of North Carolina at Chapel Hill.

  • Herman, W. S. (1967). The edysial gland of arthropods. InInternational Review of Cytology, Vol. 22 (G. H. Bourne and J. F. Danielli Eds.), Academic Press, New York, pp. 269–347.

    Google Scholar 

  • Hewes, R. S., and Truman, J. W. (1991). The roles of central and peripheral eclosion hormone release in the control of ecdysis behavior inManduca sexta.J. Comp. Physiol. 168697–707.

    Google Scholar 

  • Kataoka, H., Nagasawa, H., Kawakami, A., Oka, T., Mizoguchi, A., Iwami, M., Ishizaki, H., and Suzuki, A. (1991).Bombyx prothoracicotropic hormone. In,Insect Neuropeptides, Chemistry, Biology, and Action (J. Menn, T. J. Kelly and P. E. Masler, Eds.), ACS, Washington, DC, pp. 20–26.

    Google Scholar 

  • Kawakami, A., Kataoka, H., Oka, T., Mizoguchi, A., Kimura-Kawakami, M., Adachi, T., Iwami, M., Nagasawa, H., Suzuki, A., and Ishizaki, H. (1990). Molecular cloning of theBombyx mori prothoracicotropic hormone.Science 2461333–1335.

    Google Scholar 

  • Kohler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefining specificity.Nature 256495–497.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680–685.

    Google Scholar 

  • Lundberg, J. M., Franco-Cereceda, A., Hua, X., Hokfelt, T., and Fischer, J. A. (1985). Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin.Eur. J. Pharmacol. 108315–319.

    Google Scholar 

  • Muehleisen, D. P., Gray, R. S., Katahira, E. J., and Bollenbacher, W. E. (1993) Immunoaffinity purification of a cerebral prothoracicotropic peptide fromManduca sexta Peptides (in press).

  • Mulle, C., Benoit, P., Pinset, C., Roa., M., and Changeux, J.-P. (1988). Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells.Proc. Natl. Acad. Sci. 855728–5732.

    Google Scholar 

  • New, H. V., and Mudge, A. W. (1986). Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis.Nature 323809–811.

    Google Scholar 

  • Newcomb, R., Fisher, J. M., and Scheller, R. H. (1988). Processing of the egg-laying hormone (ELH) precursor in the bag cell neurons ofAplysia.J. Biol. Chem. 26312514–12521.

    Google Scholar 

  • O'Brien, M. A., Katahira, E. J., Flanagan, T. R., Arnold, L. W., Haughton, G., and Bollenbacher, W. E. (1988). A monoclonal antibody to the insect prothoracicotropic hormone.J. Neurosci. 83247–3257.

    Google Scholar 

  • Roberts, J. L., Lundblad, J. R., Ebetrwine, J. H., Fremeau, R. T., Salton, S. R., and Blum, M. (1987). Hormonal regulation of POMC gene expression in pituitary.Ann. N. Y. Acad. Sci. 512275–285.

    Google Scholar 

  • Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Rivier, J., Vale, W. W., and Evans, R. M. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.Nature 304129–135.

    Google Scholar 

  • Scheller, R. H., Jackson, J. F., McAllister, L. B., Rothman, B. S., Mayeri, E., and Axel, R. (1983). A single cell encodes multiple peptides mediating a stereotyped behavior.Cell 327–22.

    Google Scholar 

  • Schotzinger, R. J., and Landis, S. (1988). Cholinergic phenotype developed by noradrenergic sympathetic neurons after innervation of a novel cholinergic targetin vivo.Nature 335637–639.

    Google Scholar 

  • Sossin, W. S., and Scheller, R. H. (1989). A bag cell neuron-specific antigen localizes to a subset of dense core vesicles inAplysia californica.Brain Res. 494205–214.

    Google Scholar 

  • Sossin, W. S., Sweet-Cordero, A., and Scheller, R. H. (1990). Dale's hypothesis revisited: Different neuropeptides derived from a common prohormone are targeted to different processes.Proc. Natl. Acad. Sci. USA 874845–4848.

    Google Scholar 

  • Towbin, H. T., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 764350–4354.

    Google Scholar 

  • Truman, J. W., and Copenhaver, P. F. (1989). The larval eclosion hormone neurons inManduca sexta: Identification of the brain-proctodeal neurosecretory system.J. Exp. Biol. 147457–470.

    Google Scholar 

  • Tublitz, N. J., and Slywester, A. W. (1990). Postembryonic alteration of transmitter phenotype in individually identified peptidergic neurons.J. Neurosci. 10161–168.

    Google Scholar 

  • Warren, J. T., Sakurai, S., Rountree, D. B., Gilbert, L. I., Lee, S.-S., and Nakanishi, K. (1988). Regulation of the ecdysteroid titer ofManduca sexta: Reappraisal of the role of the prothoracic glands.Proc. Natl. Acad. Sci. USA 85958–962.

    Google Scholar 

  • Westbrook, A. L., and Bollenbacher, W. E. (1990). The development of identified neurosecretory cells in the tobacco hornworm,Manduca sexta.Dev. Biol. 140291–299.

    Google Scholar 

  • Westbrook, A. L., Regan, S. A., and Bollenbacher, W. E. (1993). Developmental expression of the prothoracicotropic hormone in the CNS of the tobacco hornworm,Manduca sexta J. Comp. Neurol. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, R.S., Muehleisen, D.P., Katahira, E.J. et al. A 28-kDa cerebral neuropeptide fromManduca sexta: Relationship to the insect prothoracicotropic hormone. Cell Mol Neurobiol 13, 39–58 (1993). https://doi.org/10.1007/BF00712988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712988

Key words

Navigation