Skip to main content
Log in

A theoretical model of multi-regime convection in a stratocumulus-topped boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The possible effects on stratocumulus circulations caused by drizzle and radiative cooling or heating are investigated theoretically using a simple Nonlinear Dynamical System (NDS). These effects are incorporated implicitly via the background temperature profile, and are expressed as departures from neutral conditions. These neutral conditions are assumed to be dry adiabatic in the surface, sub-cloud and inversion regions, and moist adiabatic in the cloud region.

The NDS domain is divided into six distinct regions that represent those commonly observed in the planetary boundary layer (PBL): 1) the surface layer, 2) the sub-cloud layer, 3) the cloud-base layer, 4) the cloud layer, 5) the cloud-top layer, and 6) the capping inversion. The NDS successfully represents the effects of the capping inversion. Circulations are limited in their upward extent by the inversion, and would only penetrate into it when surface forcing rates are quite large.

Surprisingly, when there are identical forcing rates but different initial conditions for the dynamic and thermodynamic flelds, the NDS yields two solutions throughout a wide range of cloud-base stabilities. This range covers the transition from a stable to an unstable cloud-base layer (layer 3 above). The first solution is a steady one having a decoupled form, with separate circulations in the sub-cloud region and the cloud region. The second solution is a temporally varying one exhibiting periodic coupling. The circulation in this case starts as a shallow eddy near the surface. This eddy grows into a deeper plume that penetrates into the inversion before finally dying and beginning the process again. The existence of these two fundamentally different solutions for the same forcing rates, or multi-regime convection, suggests that the PBL response to a particular forcing rate may depend critically on the initial conditions of the dynamic and thermodynamic fields. As a consequence, future modeling efforts of the PBL should consider a broad range of initial flelds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B. A.: 1989, ‘Aerosols, Cloud Microphysics, and Fractional Cloudiness’,Science 245, 1227–1230.

    Google Scholar 

  • Albrecht, B. A., Randall, D. A., and Nicholls, S.: 1988, ‘Observations of Marine Stratocumulus Clouds During FIRE’,Bull. Amer. Meteorol. Soc. 69, 618–626.

    Google Scholar 

  • Brost, R. A., Lenschow, D. H., and Wyngaard, J. C.: 1982a, ‘Marine Stratocumulus Layers. Part I: Mean Conditions’,J. Atmos. Sci. 39, 800–817.

    Google Scholar 

  • Brost, R. A., Lenschow, D. H., and Wyngaard, J. C.: 1982b, ‘Marine Stratocumulus Layers. Part II: Turbulence Budgets’,J. Atmos. Sci. 39, 818–836.

    Google Scholar 

  • Chang, H.-R. and Shirer, H. N.: 1984, ‘Transitions in Shallow Convection: An Explanation for Lateral Cell Expansion’,J. Atmos. Sci. 41, 2334–2346.

    Google Scholar 

  • Chen, C. and Cotton, W. R.: 1983, ‘A One-Dimensional Simulation of the Stratocumulus-Capped Mixed Layer’,Boundary-Layer Meteorol. 25, 289–293.

    Google Scholar 

  • Deardorff, J. W.: 1976, ‘On the Entrainment Rate of a Stratocumulus-Topped Mixed Layer’,Quart. J. Roy. Meteorol. Soc. 102, 563–582.

    Google Scholar 

  • Deardorff, J. W.: 1980, ‘Cloud-Top Entrainment Instability’,J. Atmos. Sci. 37, 131–147.

    Google Scholar 

  • DERIVE: 1992,DERIVE: A Mathematical Assistant for Your Personal Computer. Soft Warehouse, Inc., Version 2.56.

  • Dutton, J. A.: 1987, ‘Modeling: A Strategy for Understanding’, in: H. N. Shirer (ed.),Nonlinear Hydrodynamic Modeling: A Mathematical Introduction, Chapter 1,Lecture Notes in Physics 271, Springer-Verlag, pp. 1–21.

  • Dutton, J. A. and Fichtl, G. H.: 1969, ‘Approximate Equations of Motion for Gases and Liquids’,J. Atmos. Sci. 26, 241–254.

    Google Scholar 

  • Elkins, Patricia C.: 1992,Stratocumulus Convection in the Planetary Boundary Layer in the Presence of Latent Heating, a Capping Inversion, and Wind Shear, M.S. thesis, [Available from Dept. of Meteor., Pennsylvania State University, University Park, PA 16802] 118 pp.

  • Haack, T. and Shirer, H. N.: 1992, ‘Mixed Convective-Dynamic Roll Vortices and Their Effects on Initial Wind and Temperature Profiles’,J. Atmos. Sci. 49, 1181–1201.

    Google Scholar 

  • Higgins, R. W.: 1987, ‘From the Equations of Motion to Spectral Models’, in: H. N. Shirer (ed.),Nonlinear Hydrodynamic Modeling: A Mathematical Introduction, Chapter 3,Lecture Notes in Physics 271, Springer-Verlag, 47–69.

  • Hirschberg, P. A.: 1987, ‘Hierarchies of Transitions: Secondary Branching’, in: H. N. Shirer (ed.),Nonlinear Hydrodynamic Modeling: A Mathematical Introduction, Chapter 9,Lecture Notes in Physics 271, Springer-Verlag, pp. 197–224.

  • Huang, X.-Y. and Källen, E.: 1986, ‘A Low Order Model for Moist Convection’,Tellus 38A, 381–396.

    Google Scholar 

  • Kuo, H. L.: 1961, ‘Convection in Conditionally Unstable Atmosphere’,Tellus 13, 441–459.

    Google Scholar 

  • Kuo, H.-C. and Schubert, W. H.: 1988, ‘Stability of Cloud-Topped Boundary Layers’,Quart. J. Roy. Meteorol. Soc. 114, 887–916.

    Google Scholar 

  • Laufersweiler, M. J.: 1987, ‘The Expected Branching Solution: Preferred Wavelengths’, in: H. N. Shirer (ed.),Nonlinear Hydrodynamic Modeling: A Mathematical Introduction, Chapter 7,Lecture Notes in Physics 271, Springer-Verlag, pp. 131–163.

  • Laufersweiler, M. J. and Shirer, H. N.: 1989, ‘A Simple Dynamical Model of a Stratocumulus-Topped Boundary Layer’,J. Atmos. Sci. 46, 1133–1153.

    Google Scholar 

  • Lilly, D. K.: 1968, ‘Models of Cloud-Topped Mixed Layers under a Strong Inversion’,Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Lorenz, E. N.: 1963, ‘Deterministic Nonperiodic Flow’J. Atmos. Sci. 20, 130–141.

    Google Scholar 

  • Medred, R.: 1989,Dynamically Driven Roll Circulations in an Inversion-Capped Boundary Layer, M.S. Thesis, [Available from Dept. of Meteor., Pennsylvania State University, University Park, PA 16802] 164 pp.

  • Moeng, C.-H.: 1984, ‘A Large-Eddy Simulation Model for the Study of Planetary Boundary-Layer Turbulence’J. Atmos. Sci. 41, 3161–3169.

    Google Scholar 

  • Nicholls, S.: 1984, ‘The Dynamics of Stratocumulus: Aircraft Observations and Comparisons with a Mixed Layer Model’,Quart. J. Roy. Meteorol. Soc. 110, 783–820.

    Google Scholar 

  • Ogura, Y. and Phillips, N.: 1962, ‘Scale Analysis of Deep and Shallow Convection in the Atmosphere’,J. Atmos. Sci. 19, 173–179.

    Google Scholar 

  • Pyle, R. J.: 1986,On Model Truncations for Branching Temporally Periodic Solutions. M.S. Thesis, [Available from Dept. of Meteor., Pennsylvania State University, University Park, PA 16802] 109 pp.

  • Randall, D. A.: 1980, ‘Entrainment into a Stratocumulus Layer with Distributed Radiative Cooling’,J. Atmos. Sci. 37, 148–159.

    Google Scholar 

  • Randall, D. A.: 1987, ‘Turbulent Fluxes of Liquid Water and Buoyancy in Partly Cloudy Layers’J. Atmos. Sci. 44, 850–858.

    Google Scholar 

  • Rogers, D. P., Businger, J. A., and Charnock, H.: 1985, ‘A Numerical Investigation of the JASIN Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 32, 373–399.

    Google Scholar 

  • Rothermel, J. and Agee, E. M.: 1986, ‘A Numerical Study of Atmospheric Convective Scaling’,J. Atmos. Sci. 43, 1185–1197.

    Google Scholar 

  • Schubert, W. H., Wakefield, J. S., Cox, S. K., and Steinter, E. J.: 1979, ‘Marine Stratocumul Convection. Part II: Horizontally Inhomogeneous Solutions’,J. Atmos. Sci. 36, 1308–1324.

    Google Scholar 

  • Shirer, H. N.: 1986, ‘On Cloud Street Development in Three Dimensions: parallel and Rayleigh Instabilities’,Contrib. Atmos. Phys. 59, 126–149.

    Google Scholar 

  • Shirer, H. N.: 1987, ‘A Simple Nonlinear Model of Convection’, in H. N. Shirer (ed.),Nonlinear Hydrodynamic Modeling: A mathematical Introduction, Chapter 2,Lecture Notes in Physics,271, Springer-Verlag, 22–46.

  • Turton, J. D. and Nicholls, S.: 1987, ‘A Study of the Diurnal Variation of Stratocumulus using a Multiple Mixed Layer Model’,Quart. J. Roy. Meteorol. Soc. 113, 969–1009.

    Google Scholar 

  • Veronis, G.: 1966, ‘Motions at Subcritical Values of the Rayleigh Number in a Rotating Fluid’,J. Fluid Mech. 24, 545–554.

    Google Scholar 

  • Wang, S. and Albrecht, B. A.: 1986, ‘A Stratocumulus Model with an Internal Circulation’,J. Atmos. Sci. 43, 2374–2391.

    Google Scholar 

  • Wang, S. and Albrecht, B. A.: 1990, ‘A Mean-Gradient Model of the Dry Convective Boundary Layer’,J. Atmos. Sci. 47, 126–138.

    Google Scholar 

  • Yost, D. A. and Shirer, H. N.: 1982, ‘Bifurcation and Stability of Low-Order Steady Flows in Horizontally and Vertically Forced Convection’,J. Atmos. Sci. 39, 114–125.

    Google Scholar 

  • Young, G. S.: 1988, ‘Convection in the Atmospheric Boundary Layer’,Earth-Sci. Rev. 25, 179–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laufersweiler, M.J., Shirer, H.N. A theoretical model of multi-regime convection in a stratocumulus-topped boundary layer. Boundary-Layer Meteorol 73, 373–409 (1995). https://doi.org/10.1007/BF00712679

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712679

Keywords

Navigation