Skip to main content
Log in

Release of norepinephrine and dopamine from brain vesicular preparations: Effects of adenosine analogues

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Adenosine analogues inhibit calcium-dependent K+-evoked release of [3H]norepinephrine from guinea pig cerebral cortical and hippocampal vesicular preparations. Inhibition requires high concentrations (100µM) of the adenosine analogues and is abolished in the presence of high concentrations (2 mM) of calcium ions. The inhibitory effect of 2-chloroadenosine is blocked by theophylline. The structure activity profile (N 6-d-phenylisopropyladenosine ≥N 6-l-phenylisopropyladenosine ≥ 2-chloroadenosine >N 6-cyclohexyladenosine, adenosine 5′-cyclopropylcar-boxamide) is not that expected of either A1 (high-affinity) or A2 (low-affinity) adenosine receptors.

  2. 2.

    Calcium-dependent K+-evoked release of [3H]dopamine from guinea pig striatal vesicular preparations is inhibited by apomorphine. However, only 2-chloroadenoine causes an inhibition of K+-evoked release of [3H]dopamine. Other adenosine analogues such asd- andl-phenylisopropyladenosine and adenosine 5′-cyclopropylcar-boxamide cause a facilitation of K+-evoked release. The facilitation is abolished or reduced in the presence of high concentrations (2 mM) of calcium ions. The sites of action of adenosine analogues do not appear to have structural requirements identical to those expected of A1 (high-affinity) or A2 (low-affinity) adenosine receptors.

  3. 3.

    The results indicate that adenosine analogues can have either inhibitory or facilitory effects on K+-evoked release of catecholamines from central synaptic terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bruns, R. F. (1980). Adenosine receptor activation in human fibroblasts: Nucleotide agonists and antagonists.Can. J. Physiol. Pharmacol. 58673–691.

    Google Scholar 

  • Bruns, R. F., Daly, J. W., and Snyder, S. H. (1980). Adenosine receptors in brain membranes: Binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine.Proc. Natl. Acad. Sci. USA 775547–5551.

    Google Scholar 

  • Cooper, D. M. F., Londos, C., and Rodbell, M. (1980). Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process.Mol. Pharmacol. 18598–601.

    Google Scholar 

  • Daly, J. W., Bruns, R. F., and Snyder, S. H. (1981). Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines.Life Sci. 282083–2097.

    Google Scholar 

  • Dunwiddie, T. V., and Hoffer, B. J. (1980). Adenine nucleotides and synaptic transmission in thein vitro rat hippocampus.Br. J. Pharmacol. 6959–68.

    Google Scholar 

  • Ebstein, R. P., Seamon, K., Creveling, C. R., and Daly, J. W. (1982). Release of norepinephrine from brain vesicular preparations: Effects of an adenylate cyclase activator, forskolin, and a phosphodiesterase inhibitor.Cell. Mol. Neurobiol. 2179–192.

    Google Scholar 

  • Enero, M. A., and Saidman, B. Q. (1977). Possible feedback inhibition of noradrenaline release by purine compounds.Naunyn-Schmiedeberg Arch. Pharmacol. 29739–46.

    Google Scholar 

  • Gustafsson, L., Hedqvist, P., Fredholm, B. B., and Lundgren, G. (1978). Inhibition of acetylcholine release in guinea pig ileum by adenosine.Acta Physiol. Scand. 104469–478.

    Google Scholar 

  • Gustafsson, L., Fredholm, B. B., and Hedqvist, P. (1981). Theophylline interferes with the modulatory role of endogenous adenosine on cholinergic neurotransmission in guinea pig ileum.Acta Physiol. Scand. 111269–280.

    Google Scholar 

  • Harms, H. H., Wardeh, G., and Mulder, A. H. (1978). Adenosine modulates depolarization-induced release of3H-noradrenaline from slices of rat brain neocortex.Eur. J. Pharmacol. 49305–308.

    Google Scholar 

  • Harms, H. H., Wardeh, G., and Mulder, A. H. (1979). Effects of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum.Neuropharmacology 18577–580.

    Google Scholar 

  • Hedqvist, P., and Fredholm, B. B. (1976). Effects of adenosine on adrenergic neurotransmission: Prejunctional inhibition and postjunctional enhancement.Naunyn-Schmiedeberg Arch. Pharmacol. 293217–224.

    Google Scholar 

  • Hollins, C., and Stone, T. W. (1980). Adenosine inhibition ofγ-aminobutyric acid release from slices of rat cerebral cortex.Br. J. Pharmacol. 69107–112.

    Google Scholar 

  • Hom, G. J., and Lokhandwala, M. F. (1981). Presynaptic inhibition of vascular sympathetic neurotransmission by adenosine.Eur. J. Pharmacol. 69101–106.

    Google Scholar 

  • Kahn, M. T., and Malik, K. U. (1980). Inhibitory effect of adenosine and adenine nucleotides on potassium-evoked effux of [3H]-noradrenaline from the rat isolated heart: Lack of relationship to prostaglandins.Br. J. Pharmacol. 68551–562.

    Google Scholar 

  • Kamal, L. A., Arbilla, S., and Langer, S. Z. (1981). Presynaptic modulation of the release of dopamine from the rabbit caudate nucleus: Differences between electrical stimulation, amphetamine and tyramine.J. Pharmacol. Exp. Ther. 216592–598.

    Google Scholar 

  • Kuroda, Y. (1978). Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brain.J. Physiol. (Paris) 74463–470.

    Google Scholar 

  • Londos, C., Cooper, D. M. F., and Wolfe, J. (1980). Subclasses of external adenosine receptors.Proc. Natl. Acad. Sci. USA 772551–2554.

    Google Scholar 

  • McNeal, E. T., Creveling, C. R., and Daly, J. W. (1980). Cyclic AMP-generating systems in cell-free preparations from guinea pig cerebral cortex: Loss of adenosine and amine responsiveness due to low levels of endogenous adenosine.J. Neurochem. 35338–342.

    Google Scholar 

  • Michaelis, M. L., Michaelis, E. K., and Myers, S. L. (1979). Adenosine modulation of synaptosomal dopamine release.Life Sci. 242083–2092.

    Google Scholar 

  • Mueller, A. L., Mosimann, W. F., and Weiner, N. (1979). Effect of adenosine on neurally mediated norepinephrine release from the cat spleen.Eur. J. Pharmacol. 53329–333.

    Google Scholar 

  • Muller, M. H., and Paton, D. M. (1979). Presynaptic inhibitory actions of 2-substituted adenosine derivatives on neurotransmission in rat vas deferens. Effects of inhibitors of adenosine uptake and deamination.Naunyn-Schmiedeberg Arch. Pharmacol. 30623–28.

    Google Scholar 

  • Paton, D. M. (1980). Presynaptic inhibition of neurotransmission in rat vas deferens by 2-(p-methoxyphenyl)-adenosine, ethyl adenosine-5′-carboxylate and N-cyclopropyl adenosine-5′-carboxamide.J. Pharm. Pharmacol. 32133–134.

    Google Scholar 

  • Paton, D. M. (1981). Structure-activity relations for presynaptic inhibition of adrenergic and cholinergic transmission by adenosine: Evidence for action on A1 receptors.J. Autonom. Pharmacol. 1287–291.

    Google Scholar 

  • Phillis, J. W. (1977). The role of cyclic nucleotides in the CNS.Can. J. Neurol. Sci. 4151–195.

    Google Scholar 

  • Sattin, A., and Rall, J. W. (1970). The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices.Mol. Pharmacol. 613–23.

    Google Scholar 

  • Schwabe, U., and Trost, T. (1980). Characterization of adenosine receptors in rat brain by (−)[3H]N6-phenylisopropyladenosine.Naunyn-Schmiedeberg Arch. Pharmacol. 313179–187.

    Google Scholar 

  • Silinsky, E. M. (1980). Evidence for specific adenosine receptors at cholinergic nerve endings.Br. J. Pharmacol. 7157–64.

    Google Scholar 

  • Silinsky, E. M. (1981). On the calcium receptor that mediates depolarization-secretion coupling at cholinergic motor nerve terminals.Br. J. Pharmacol. 73413–430.

    Google Scholar 

  • Smellie, F. W., Daly, J. W., Dunwiddie, T. V., and Hoffer, B. J. (1980). The dextro and levorotary isomers of N-phenylisopropyladenosine: Stereospecific effects on cyclic AMP-formation and evoked synaptic responses in brain slices.Life Sci. 251739–1748.

    Google Scholar 

  • Snyder, S. H., Katims, J. J., Annau, Z., Bruns, F. R., and Daly, J. W. (1981). Adenosine receptors and behavioral actions of methylxanthines.Proc. Natl. Acad. Sci. USA 783260–3264.

    Google Scholar 

  • Stone, T. W. (1981). Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system.Neuroscience 6523–556.

    Google Scholar 

  • Taylor, D. A., and Stone, T. W. (1980). The action of adenosine on noradrenergic neuronal inhibition induced by stimulation of locus coeruleus.Brain Res. 183367–376.

    Google Scholar 

  • Van Calker, D., Muller, M., and Hamprecht, B. (1979). Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells.J. Neurochem. 33999–1005.

    Google Scholar 

  • Vanhoutte, P. M., Collis, M. G., Janssens, W. J., Verbeuren, T. J. (1981). Calcium dependence of prejunctional inhibitory effects of adenosine and acetylcholine on adrenergic neurotransmission in canine saphenous veins.Eur. J. Pharmacol. 72189–198.

    Google Scholar 

  • Vizi, E. S., and Knoll, J. (1976). The inhibitory effect of adenosine and related nucleotides on the release of acetylcholine.Neuroscience 1391–398.

    Google Scholar 

  • Wakade, A. R. (1979). Modulation of3H-norepinephrine release in the rat hypothalamus and cortex by adenosine. InAdvances in the Biosciences, Vol. 18 (Langer, S. Z., Starke K., and Dubocovich, M. L., Eds.), Pergamon Press, New York, pp. 377–383.

    Google Scholar 

  • Walker, J. E., Goodman, P., Jacobs, D., and Lewin, E. (1978). Uptake and release of norepinephrine by slices of rat cerebral cortex: Effect of agents that increase cyclic AMP levels.Neurology 28900–904.

    Google Scholar 

  • Williams, M., and Risley, E. A. (1980). Biochemical characterization of putative central purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine.Proc. Natl. Acad. Sci. USA 776892–6896.

    Google Scholar 

  • Wu, P. H., Phillis, J. W., Balls, K., and Rinaldi, B. (1980). Specific binding of 2-[3H]chloroadenosine to rat brain cortical membranes.Can. J. Physiol. Pharmacol. 58576–579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebstein, R.P., Daly, J.W. Release of norepinephrine and dopamine from brain vesicular preparations: Effects of adenosine analogues. Cell Mol Neurobiol 2, 193–204 (1982). https://doi.org/10.1007/BF00711147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711147

Key words

Navigation