Skip to main content
Log in

Diffusion of ions and indicator dyes in neural cytoplasm

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The dispersion of dye molecules and small cations injected from a point source in the cytoplasm of molluscan neurons has been measured photometrically and compared with dispersion in aqueous solution.

  2. 2.

    The diffusion of phenol red and arsenazo III was at least a factor of five slower in the cytoplasm than in saline. Movement of both dyes was slowed by about the same factor in a given cell. The dispersion rate of arsenazo III was not significantly affected by preloading the cytoplasm to dye concentrations up to 0.5 mM.

  3. 3.

    Calcium and barium dispersion was measured in neurons and saline droplets preloaded with arsenazo III, while phenol red absorbance changes were used to follow the dispersion of injected protons. Ba2+ and H+ moved very slowly in the cytoplasm compared to aqueous solution.

  4. 4.

    Ca2+ movement in all probability underwent a similar retardation in the neurons but high-affinity buffering of the cytoplasm severely restricted the spread of detectable amounts of this ion away from the injection site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, Z., and Connor, J. A. (1979). Measurement of calcium influx under voltage clamp in molluscan neurons using the metallochromic dye arsenazo III.J. Physiol. 28661–82.

    Google Scholar 

  • Ahmed, Z., and Connor, J. A. (1980). Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurons.J. Gen. Physiol. 75403–426.

    Google Scholar 

  • Ahmed, Z., Kragie, L., and Connor, J. A. (1980). Stoichiometry and apparent dissociation constant of the calcium-arsenazo III reaction under physiological conditions.Biophys. J. 32907–920.

    Google Scholar 

  • Ambercrombie, R. F., Masukawa, L. M., Sjodin, R. A., and Livengood, D. (1981). Uptake and release of45Ca bymyxicola axoplasm.J. Gen. Physiol. 78413–429.

    Google Scholar 

  • Baker, P. F. (1972). Transport and metabolism of calcium ions in nerve.Prog. Biophys. Mol. Biol. 24177–223.

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., and Ridgway, E. B. (1971). Depolarization and calcium entry in squid giant axons.J. Physiol. (Lond.) 218709–755.

    Google Scholar 

  • Baker, P. F., and Schlaepfer, W. W. (1978). Uptake and binding of calcium by axoplasm isolated from giant axons ofloligo andmyxicola.J. Physiol. (Lond.) 276103–125.

    Google Scholar 

  • Baylor, S. M., Chandler, W. K., and Marshall, M. W. (1982). Dichroic components of arsenazo III and dichlorophosphonazo III signals in skeletal muscle fibres.J. Physiol. (Lond.) 331179–210.

    Google Scholar 

  • Beeler, T. J., Schibeci, A., and Martonosi, A. (1980). The binding of arsenazo III to cell components.Biochim. Biophys. Acta 629317–327.

    Google Scholar 

  • Brown, H. M., and Meech, R. W. (1979). Light induced changes of internal pH in a barnacle photoreceptor and the effect of internal pH on the receptor potential.J. Physiol. (Lond.) 29773–93.

    Google Scholar 

  • Connor, J. A. (1977). Time course separation of two inward currents in molluscan neurons.Brain Res. 119487–492.

    Google Scholar 

  • Connor, J. A. (1979). Calcium current in molluscan neurones: Measurement under conditions which maximize its visibility.J. Physiol. 28641–60.

    Google Scholar 

  • Connor, J. A., Ahmed, Z., and Ebert, G. (1981). Diffusion of Ca2+, Ba2+, H+ and arsenazo III in neural cytoplasm.Soc. Neurosci. Abstr. 715.

    Google Scholar 

  • Dedman, J. R., Potter, J. D., Jackson, R. L., Johnson, J. D., and Mean, A. R. (1977). Physiocochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase.J. Biol. Chem. 2528415–8422.

    Google Scholar 

  • Dipolo, R., Requena, J., Brinley, F. J., Mullins, L. J., Scarpa, A., and Tiffert, T. (1976). Ionized calcium concentrations in squid axons.J. Gen. Physiol. 67433–467.

    Google Scholar 

  • Fuchs, F. (1971). Ion exchange properties of the calcium receptor site of troponin.Biochim. Biophys. Acta 245221–229.

    Google Scholar 

  • Gorman, A. L. F., and Hermann, A. (1979). Internal effects of divalent cations on potassium permeability in molluscan neurons.J. Physiol. (Lond.) 296393–410.

    Google Scholar 

  • Hagiwara, S. (1973). Ca spike.Adv. Biophys. 471–102.

    Google Scholar 

  • Hodgkin, A. L., and Keynes, R. D. (1956). Experiments on the injection of substances into squid giant axons by means of a micro syringe.J. Physiol. 131592–616.

    Google Scholar 

  • Hodgkin, A. L., and Keynes, R. D. (1957). Movements of labelled calcium in giant axons.J. Physiol. 138253–281.

    Google Scholar 

  • Kendrick, N. C., Ratzlaff, R. W., and Blaustein, M. P. (1977). Arsenazo III as an indicator for ionized calcium in physiological salt solutions: Its use for determination of the CaATP dissociation constant.Anal. Biochem. 83433–450.

    Google Scholar 

  • Kushmerick, M. J., and Podolsky, R. J. (1969). Ionic mobility in muscle cells.Science 1661297–1298.

    Google Scholar 

  • Mimura, N., and Asano, A. (1979). Ca2+-sensitive gelatin of actin filaments by a new protein factor.Nature 28244–48.

    Google Scholar 

  • Owen, J., and Brown, H. M. (1980). Intracellular changes of H+ and Ca2+ activities inaplysia giant neurons as measured with ion sensitive microelectrodes.Comp. Biochem. Physiol. 66A197–201.

    Google Scholar 

  • Rakowski, R. F., and Sommerer, J. C. (1981). Diffusion of the Ca2+ indicator dye arsenazo III in aqueous solution and in frog skeletal muscle fibers.Biophys. J. 33:150a.

    Google Scholar 

  • Rose, B., and Loewenstein, W. R. (1975). Calcium ion distribution in cytoplasm visualized by aequorin: Distribution in cytosol is restricted due to energized sequestering.Science 1901204.

    Google Scholar 

  • Thomas, R. C. (1974). Intracellular pH of snail neurons measured with a new pH-sensitive glass microelectrode.J. Physiol. (Lond.) 238158–180.

    Google Scholar 

  • Thomas, R. C. (1976). The effect of carbon dioxide on the intracellular pH and buffering power of snail neurons.J. Physiol. (Lond.) 255715–735.

    Google Scholar 

  • Wolff, D. J., Poisier, P. G., Brostrom, C. O., and Brostrom, M. A. (1977). Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein.J. Biol. Chem. 2524108–4117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connor, J.A., Ahmed, Z. Diffusion of ions and indicator dyes in neural cytoplasm. Cell Mol Neurobiol 4, 53–66 (1984). https://doi.org/10.1007/BF00710942

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00710942

Key words

Navigation