Skip to main content
Log in

Stereology of myocardial hypertrophy induced by physical exercise

  • Published:
Virchows Archiv A Aims and scope Submit manuscript

Summary

Twenty young female Sprague-Dawley rats were randomly assigned to 2 groups. Ten animals served as sedentary controls, the 10 experimental animals were subjected to a training program with gradually increasing intensity of 18 weeks duration on a motor-driven treadmill. The rats were fixed by retrograde vascular perfusion via the abdominal aorta under anesthesia. Two transverse and 2 longitudinal sections per animal were selected at random from the left ventricular papillary muscles for light and electron microscopic stereological investigation. Length density and surface density of myocardial cells and capillaries were estimated with correction for partial anisotropy and curvature by means of the mathematical model of a Dimroth Watson orientation distribution. Left and right ventricular weight increased by 20% in the exercise group (P<0.001), whereas body weight remained unchanged. Physical training led to a significant increase of heart muscle fiber cross-sectional area by 17% (P<0.01). The ultrastructural volumetric composition of the myocardial cell cytoplasm by myofibrils, mitochondria, and sarcoplasmic matrix remained unchanged. Volume density, length density and surface density of capillaries, as well as capillary cross-sectional area and capillary anisotropy parameters were not significantly altered by training. From the data one concludes an increase of the 3-dimensional capillary-fiber ratio by 19% (P<0.001). Thus physical training induces mild absolute biventricular cardiac hypertrophy in young female rats, in which capillary proliferation compensates for the increase of mean oxygen diffusion distance resulting from fiber thickening, by supplying each unit of fiber length by more units of capillary length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anversa P, Olivetti G, Melissari M, Loud AV (1980) Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. J Mol Cell Cardiol 12:781–795

    Google Scholar 

  • Anversa P, Beghi C, Levicky V, McDonald SL, Kikkawa Y (1982) Mophometry of right ventricular hypertrophy induced by strenuous exercise in rat. Am J Physiol 243:H856-H861

    Google Scholar 

  • Anversa P, Levicky V, Beghi C, McDonald SL, Kikkawa Y (1983) Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ Res 52:57–64

    Google Scholar 

  • Anversa P, Beghi C, Levicky V, McDonald SL, Kikkawa Y, Olivetti G (1985) Effects of strenuous exercise on the quantitative morphology of left ventricular myocardium in the rat. J Mol Cell Cardiol 17:587–595

    Google Scholar 

  • Astorri E, Bolognesi R, Colla B, Chizzola A, Visioli O (1977) Left ventricular hypertrophy: a cytometric study on 42 human hearts. J Mol Cell Cardiol 9:763–775

    Google Scholar 

  • Bell RD, Rasmussen RL (1974) Exercise and the myocardial capillary-fiber ratio during growth. Growth 38:237–244

    Google Scholar 

  • Bloor CM, Leon AS (1970) Interaction of age and exercise on the heart and its blood supply. Lab Invest 22:160–165

    Google Scholar 

  • Bozner A, Meessen H (1969) Die Feinstruktur des Herzmuskels der Ratte nach einmaligem und nach wiederholtem Schwimmtraining. Virchows Arch B [Cell Pathol] 3:248–269

    Google Scholar 

  • Breisch EA, White FC, Bloor CM (1984) Myocardial characteristics of pressure overload hypertrophy. A structural and functional study. Lab Invest 51:333–342

    Google Scholar 

  • Claycomb WC (1975) Biochemical aspects of cardiac muscle differentiation. J Biol Chem 250:3229–3235

    Google Scholar 

  • Crisman RP, Rittman B, Tomanek RJ (1985) Exercise-induced myocardial capillary growth in the spontaneously hypertensive rat. Microvasc Res 30:185–194

    Google Scholar 

  • Crisman RP, Tomanek RJ (1985) Exercise training modifies myocardial mitochondria and myofibril growth in spontaneously hypertensive rats. Am J Physiol 248:H8-H14

    Google Scholar 

  • Cruz-Orive LM, Hoppeler H, Mathieu O, Weibel ER (1985) Stereological analysis of anisotropic structures using directional statistics. Appl Statist 34:14–32

    Google Scholar 

  • Doerr W (1971) Morphologie der Myokarditis. Verb Dtsch Ges Inn Med 77:301–335

    Google Scholar 

  • Doerr W, Rossner JA (1977) Toxische Arzneiwirkungen am Herzmuskel. Springer, Berlin Heidelberg New York (Sitzungsberichte der Heidelberger Akademie der Wissenschaften 77/4:175–207

    Google Scholar 

  • Friedman I, Moravec J, Reichart E, Hatt PY (1973) Subacute myocardial hypoxia in the rat. An electron microscopic study of the left ventricular myocardium. J Mol Cell Cardiol 5:125–132

    Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  • Holtz J, von Restorff W, Bard P, Bassenge E (1977) Transmural distribution of myocardial blood flow and of coronary reserve in canine left ventricular hypertrophy. Basic Res Cardiol 72:286–292

    Google Scholar 

  • Hort W (1951) Morphologische und physiologische Untersuchungen an Ratten während eines Lauftrainings und nach dem Training. Virchows Arch 320:197–237

    Google Scholar 

  • Hort W, Frenzel H, Lange P, Tezuka F (1985) Rückbildung der Herzhypertrophie.In: Mall G, Otto HF (eds) Herzhypertrophie, Springer, Berlin pp 43–47

    Google Scholar 

  • Hudlicka O (1982) Growth of capillaries in skeletal and cardiac muscle. Circ Res 50:451–461

    Google Scholar 

  • Koyanagi S, Eastham CL, Harrison DG, Marcus ML (1982) Increased size of myocardial infarction in dogs with chronic hypertension and left ventricular hypertrophy. Circ Res 50:55–62

    Google Scholar 

  • Laughlin MH, Diana JN, Tipton CM (1978) Effects of exercise training on coronary reactive hyperemia and blood flow in the dog. J Appl Physiol 45:604–610

    Google Scholar 

  • Leon AS, Bloor CM (1968) Effects of exercise and its cessation on the heart and its blood supply. J Appl Physiol 24:485–490

    Google Scholar 

  • Lin H-L, Katele KV, Grimm AF (1977) Functional morphology of the pressure- and the volume-hypertrophied rat heart. Circ Res 41:830–836

    Google Scholar 

  • Linzbach AJ (1947) Mikrometrische und histologische Analyse hypertropher menschlicher Herzen. Virchows Arch [Pathol Anat] 314:534–594

    Google Scholar 

  • Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    Google Scholar 

  • Ljungqvist A, Unge G (1977) Capillary proliferative activity in myocardium and skeletal muscle of exercised rats. J Appl Physiol 43:306–307

    Google Scholar 

  • Loud AV, Beghi C, Olivetti G, Anversa P (1984) Morphometry of right and left ventricular myocardium after strenuous exercise in preconditioned rats. Lab Invest 51:104–111

    Google Scholar 

  • Mall G, Reinhard H, Kayser K, Rossner JA (1978) An effective morphometric method for electron microscopic studies on papillary muscles. Virchows Arch [Pathol Anat] 379:219–228

    Google Scholar 

  • Mall G, Mattfeldt T, Volk B (1980) Ultrastructural morphometric study on the rat heart after chronic ethanol feeding. Virchows Arch [Pathol Anat] 389:59–77

    Google Scholar 

  • Mall G, Mattfeldt T, Rieger P, Volk B, Frolov VA (1982) Morphometric analysis of the rabbit myocardium after chronic ethanol feeding - early capillary changes. Basic Res Cardiol 77:57–67

    Google Scholar 

  • Mathieu O, Cruz-Orive LM, Hoppeler H, Weibel ER (1983) Estimating length density and quantifying anisotropy in skeletal muscle capillaries. J Microsc 131:131–146

    Google Scholar 

  • Mattfeldt T, Mall G, Volk B (1980) Morphometric analysis of rat heart mitochondria after chronic ethanol treatment. J Mol Cell Cardiol 12:1311–1319

    Google Scholar 

  • Mattfeldt T, Mall G (1983) Dipyridamole-induced capillary endothelial cell proliferation in the rat heart - a morphometric investigation. Cardiovasc Res 17:229–237

    Google Scholar 

  • Mattfeldt T, Mall G (1984) Estimation of length and surface of anisotropic capillaries. J Microsc 135:181–190

    Google Scholar 

  • Mattfeldt T, Möbius H-J, Mall G (1985) Orthogonal triplet probes: an efficient method for unbiased estimation of length and surface of objects with unknown orientation in space. J Microsc 139:279–289

    Google Scholar 

  • McElroy CL, Gissen SA, Fishbein MC (1978) Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation 57:958–962

    Google Scholar 

  • Merz WA (1967) Die Streckenmessung an gerichteten Strukturen im Mikroskop und ihre Anwendung zur Bestimmung von Oberflächen-Volumen-Relationen im Knochengewebe. Mikroskopie 22:132–142

    Google Scholar 

  • Mueller TM, Marcus ML, Kerber RE, Young JA, Barnes RW, Abboud FM (1978) Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ Res 42:543–549

    Google Scholar 

  • O'Keefe DD, Hoffman JIE, Cheitlin R, O'Neill MJ, Allard JR, Shapkin E (1978) Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 43:43–51

    Google Scholar 

  • Oscai LB, Molé PA, Holloszy JO (1971) Effects of exercise on cardiac weight and mitochondria in male and female rats. Am J Physiol 220:1944–1948

    Google Scholar 

  • Pannier JL, Leusen I (1977) Regional blood flow in response to exercise in conscious dogs. Eur J Appl Physiol 36:255–265

    Google Scholar 

  • Schaible TF, Scheuer J (1981) Cardiac function in hypertrophied hearts from chronically exercised female rats. J Appl Physiol 50:1140–1145

    Google Scholar 

  • Scheuer J (1982) Effects of physical training on myocardial vascularity and perfusion. Circulation 66:491–495

    Google Scholar 

  • Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Ann Rev Physiol 39:221–251

    Google Scholar 

  • Spear KL, Koerner JE, Terjung RL (1978) Coronary blood flow in physically trained rats. Cardiovasc Res 12:135–143

    Google Scholar 

  • Tomanek RJ (1970) Effects of age and exercise on the extent of the myocardial capillary bed. Anat Rec 167:55–62

    Google Scholar 

  • Tornling G, Unge G, Skoog L, Ljungqvist A, Carlsson S, Adolfsson J (1978) Proliferative activity of myocardial capillary wall cells in dipyridamole-treated rats. Cardiovasc Res 12:692–695

    Google Scholar 

  • Tornling G (1982) Capillary neoformation in the heart and skeletal muscle during dipyridamole-treatment and exercise. Acta Pathol Microbiol Scand A (Suppl) 278:1–63

    Google Scholar 

  • Van Liere EJ, Krames BB, Northup DW (1965) Differences in cardiac hypertrophy in exercise and in hypoxia. Circ Res 16:244–248

    Google Scholar 

  • Weibel ER (1980) Stereological Methods. II. Theoretical Foundations. London, Academic Press

    Google Scholar 

  • Wright AJA, Hudlicka O (1981) Capillary growth and changes in heart performance induced by chronic bradycardial pacing. Circ Res 49:469–478

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattfeldt, T., Krämer, KL., Zeitz, R. et al. Stereology of myocardial hypertrophy induced by physical exercise. Vichows Archiv A Pathol Anat 409, 473–484 (1986). https://doi.org/10.1007/BF00705418

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705418

Key words

Navigation