Skip to main content
Log in

Dehalogenation of haloalkanes byRhodococcus erythropolis Y2

The presence of an oxygenase-type dehalogenase activity complements that of an halidohydrolase activity

Biodegradation Aims and scope Submit manuscript

Abstract

Phodococcus erythropolis Y2 produced two types of dehalogenase: a hydrolytic enzyme, that is an halidohydrolase, which was induced by C3 to C6 1-haloalkane substrates, and at least one oxygenase-type dehalogenase induced by C7 to C16 1-haloalkanes andn-alkanes. The oxygenase-type activity dehalogenated C4 to C18 1-chloroalkanes with an optimum activity towards 1-chlorotetradecane. The halidohydrolase catalysed the dehalogenation of a wide range of 1- and α,ω-disubstituted haloalkanes and α,ω-substituted haloalcohols. In resting cell suspensions of hexadecane-grownR. erythropolis Y2 the oxygenase-type dehalogenase had a specific activity of 12.9 mU (mg protein)−1 towards 1-chlorotetradecane (3.67 mU mg−1 towards 1-chlorobutane) whereas the halidohydrolase in 1-chlorobutane-grown batch cultures had a specific activity of 44 mU (mg protein)−1 towards 1-chlorobutane.

The significance of the two dehalogenase systems in a single bacterial strain is discussed in terms of their contribution to the overall catabolic potential of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bergmann JF & Sanik J (1957) Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29: 241–243

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Colby J, Stirling DI & Dalton H (1977) The soluble methane monooxygenase ofMethylococcus capsulatus (Bath), its ability to oxygenaten-alkanes,n-alkenes, ethers and alicyclic aromatic and heterocyclic compounds. Biochem. J. 165: 395–402

    Google Scholar 

  • Cornish A, Macdonald J, Burrows KJ, King TS & Scott D (1985) Succinate as an in vitro electron donor for the particulate methane monooxygenase ofMethylosinus trichosporium OB3b. Biotech. Letts. 7: 319–324

    Google Scholar 

  • Dalton H (1980) Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes. Adv. Appl. Microbiol. 26: 71–87

    Google Scholar 

  • De Smet MJ, Kingman J & Witholt B (1978) The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes ofEscherichia coli. Biochim. Biophys. Acta 506: 64–80.

    Google Scholar 

  • Dunlop WF & Robards AW (1973) Ultrastructural study of poly-β-hydroxybutyrate granules fromBacillus cereus. J. Bacteriol. 114: 1271–1280

    Google Scholar 

  • Goldman P (1965) The enzymatic cleavage of carbon-fluorine bond in fluoroacetate. J. Biol. Chem. 240: 3434–3438

    Google Scholar 

  • Hardman DJ (1991) Microbial dehalogenation. CRC Crit. Rev. Biotech. 11: 1–40

    Google Scholar 

  • Hardman DJ & Slater JH (1981) Dehalogenases in soil bacteria. J. Gen. Microbiol. 123: 117–128

    Google Scholar 

  • Higgins IJ, Hammond RC, Sariaslani FS, Best D, Davies MM, Tryhorn SE & Taylor F (1979) Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grownMethylosinus trichosporium OB3b. Biochem. Biophys. Res. Comm. 89: 671–677

    Google Scholar 

  • Imai T, Takigawa H, Nakagawa S, Shen G-J, Kodama T & Minoda Y (1986) Microbial oxidation of hydrocarbons and related compounds by whole cell suspensions of methane-oxidizing bacterium H-2. Appl. Environ. Microbiol. 52: 1403–1406

    Google Scholar 

  • Janssen DB, Scheper A, Dijkhuizen L & Witholt B (1985) Degradation of halogenated aliphatic compounds byXanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49: 673–677

    Google Scholar 

  • Janssen DB, Jager D & Witholt B (1987) Degradation ofn-haloalkanes and α,ω-dihaloalkanes by wild-type and mutants ofAcinetobacter sp. strain GJ70. Appl. Environ. Microbiol. 53: 561–566

    Google Scholar 

  • Janssen DB, Pries F, van den Ploeg J, Kazemier B, Terpstra P & Witholt B (1989) Cloning of 1,2-dichloroethane degradation genes ofXanthobacter autotrophicus GJ10 and expression and sequencing of thedhlA gene. J. Bacteriol. 171: 6791–6799

    Google Scholar 

  • Kellenberger E, Ryter A & Sechaud J (1958) Electron microscope study of DNA-containing plasms II: Vegetative and mature phage DNA as compared with normal bacterial nucleotides in different physiological states. J. Biophys Biochem. Cytol. 4: 671–678

    Google Scholar 

  • Lam T & Vilker L (1986) Biodehalogenation of bromotrichloromethane and 1,2-dibromo-3-chloropropane byPseudomonas putida PpG-786. Biotech. Bioeng. 29: 151–159

    Google Scholar 

  • Law JH & Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82: 33–36

    Google Scholar 

  • Leisinger T & Bader R (1993) Microbial dehalogenation of synthetic organohalogen compounds: Hydrolytic dehalogenases. Chimia 47: 116–121

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Macrae RM & Wilkinson JF (1958) Poly-β-hydroxybutyrate metabolism in washed suspensions ofBacillus cereus andBacillus megaterium. J. Gen. Microbiol. 19: 210–222

    Google Scholar 

  • McKenna EJ & Coon MJ (1970) Enzymatic ω-oxidation IV, Purification and properties of ω-hydroxylase ofPseudomonas oleovorans. J. Biol. Chem. 245: 3882–3889

    Google Scholar 

  • Miozzari GF, Niederberger P & Hutter R (1978) Permeabilisation of microorganisms by Triton X-100. Anal. Biochem. 90: 220–233

    Google Scholar 

  • Omori T & Alexander M (1978) Bacterial dehalogenation of halogenated alkanes and fatty acids. Appl. Environ. Microbiol. 35: 867–871

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. 17: 208–213

    Google Scholar 

  • Sallis PJ, Armfield SJ, Bull AT & Hardman DJ (1990) Isolation and characterization of a haloalkane dehalogenase fromRhodococcus erythropolis Y2. J. Gen. Microbiol. 136: 115–120

    Google Scholar 

  • Scholtz R, Leisinger T, Suter F & Cook AM (1987) Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from anArthrobacter sp. J. Bacteriol. 169: 5016–5021

    Google Scholar 

  • Scholtz R, Wackett LP, Egli C, Cook AM & Leisinger T (1988) Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane — utilizing bacterium. J. Bacteriol. 170: 5698–5704

    Google Scholar 

  • Scott CCL & Finnerty WR (1976) A comparative study of the ultrastructure of hydrocarbon-oxidising microorganisms. J. Gen. Microbiol. 94: 342–350

    Google Scholar 

  • Slater JH (1994) Microbial dehalogenation of haloaliphatic compounds. In: Ratledge C (ed.) Biochemistry of microbial degradation, pp 379–421. Kluwer Academic Publisher

  • Slater JH, Lovatt D, Weightman AJ, Senior E & Bull AT (1979) The growth ofPseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. J. Gen. Microbiol. 114: 125–136

    Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastr. Res. 26: 31–43

    Google Scholar 

  • Stanley SH, Prior SD, Leak DJ & Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane utilizing organisms: studies in batch and continuous culture. Biotech. Letts 5: 487–492

    Google Scholar 

  • Stirling DI & Dalton H (1980) Oxidation of dimethyl ether, methyl formate and bromoethane byMethylococcus capsulatus (Bath). J. Gen. Microbiol. 116: 277–283

    Google Scholar 

  • Tsang JSH, Yokota T, Omori T & Minoda Y (1983) A preliminary study on the chloroalkane utilising bacteria. Ann. Rep. ICME 6: 101–115. Osaka University, Japan

    Google Scholar 

  • Williamson DH, Wilkinson JF (1958) The isolation and estimation of the poly-β-hydroxybutyrate inclusions ofBacillus species. J. Gen. Microbiol. 19: 198–209

    Google Scholar 

  • Yokota T, Fuse H, Omori T & Minoda Y (1986) Microbial dehalogenation of haloalkanes mediated by oxygenase or halidohydrolase. Agric. Biol. Chem. 50: 453–460

    Google Scholar 

  • Yokota T, Omori T & Kodama T (1987) Purification and properties of haloalkane dehalogenase fromCorynebacterium sp. m15-3. J. Bacteriol. 169: 4049–4054

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armfield, S.J., Sallis, P.J., Baker, P.B. et al. Dehalogenation of haloalkanes byRhodococcus erythropolis Y2. Biodegradation 6, 237–246 (1995). https://doi.org/10.1007/BF00700463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00700463

Key words

Navigation