Skip to main content
Log in

HO x production due to radon decay in air

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The HO x (OH and HO2) production rate in indoor air caused by radon decay was measured by the chemical amplification technique. The average HO x production rate was found to be (4.31±0.07)×105 HO x per Rn decay per second (Bq) within the range of relative humidity from 3.4 to 55.0 percent at 22 °C. This work providedG(HO x )-value, 7.86±0.13 #/100 eV in air by directly measuring [HO x ] from radiolysis of water vapor. It is also found that there is no obvious relationship between the HO x production rate and the relative humidity in this range. Therefore, this work provides both the basic data for the evaluation of radioactive pollution in indoor air as well as a potentially useful way to produce HO x concentrations in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F. Jr., Kerr, J. A., and Troe, J., 1989, Evaluated kinetic and photochemical data for atmospheric chemistry: supplement III,J. Phys. Chem. Ref. Data 18, 881–1097.

    Google Scholar 

  • Baardsen, E. L. and Terhune, R. W., 1972, Detection of OH in the atmosphere using a dye laser,Appl. Phys. Lett. 21, 209–211.

    Google Scholar 

  • Campbell, M. J., Sheppard, J. C., and Au, B. F., 1979, Measurement of hydroxyl concentration in boundary layer air by monitoring CO oxidation,Geophys. Res. Lett. 6, 175–178.

    Google Scholar 

  • Campbell, M. J., Farmer, J. C., Fitzer, C. A., and Henry, M. N., 1986, Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations,J. Atmos. Chem. 4, 413–427.

    Google Scholar 

  • Cantrell, C. A. and Stedman, D. H., 1982, A possible technique for the measurement of atmospheric peroxy radicals,Geophys. Res. Lett. 9, 846–849.

    Google Scholar 

  • Cantrell, C. A., Stedman, D. H., and Wendel, G. J., 1984, Measurement of atmospheric peroxyl radicals by chemical amplification,Anal. Chem. 56, 1496–1502.

    Google Scholar 

  • Chan, C. Y., O'Brlen, R. J., Hard, T. M., and Cook, T. B., 1983, Laser-excited fluorescence of the hydroxyl radical: relaxation coefficients at atmospheric pressure,J. Phys. Chem. 87, 4966–4974.

    Google Scholar 

  • Davis, D. D., Heaps, W., and McGee, T., 1976, Direct measurements of natural tropospheric levels of OH via an aircraft borne tunable dye laser,Geophys. Res. Lett. 3, 331–333.

    Google Scholar 

  • Davis, L. I. Jr., Guo, C., James, J. V., Morris, P. T., Postiff, R., and Wang, C. C., 1985, An airborne lidar instrument for detection of OH using the technique of laser-induced fluoresence,J. Geophys. Res. 90, (D7), 12835–12842.

    Google Scholar 

  • Davis, L. I. Jr., James, J. V., Wang, C. C., Guo, C., Morris, P. T. and Fishman, J., 1987, OH measurement near the intertropical convergence zone in the Pacific,J. Geophys. Res. 92 (D2), 2020–2024.

    Google Scholar 

  • Dorn, H.-P., Callies, J., Platt, U., and Ehhalt, D. H., 1988, Measurement of tropospheric OH concentrations by laser long-path absorption spectroscopy,Tellus 40B, 437–445.

    Google Scholar 

  • Ehhalt, D. H., Dorn, H.-P., and Poppe, D., 1991, The chemistry of the hydroxyl radical in the troposphere,Proc. Royal Soc. Edinburgh 97B, 17–34.

    Google Scholar 

  • Eisele, F. L. and Tanner, D. J., 1991, Ion-assisted tropospheric OH measurements,J. Geophys. Res. 96 (D5), 9295–9308.

    Google Scholar 

  • Environmental Protection Agency (EPA), 1992, Technical Support Document for 1992 Citizen's Guide to Radon, Report No. EPA 400-R-92-001, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Felton, C. C., Sheppard, J. C., and Campbell, M. J., 1988, Measurements of the diurnal OH cycle by a14C-tracer method,Nature 335, 53–55.

    Google Scholar 

  • Felton, C. C., Sheppard, J. C., and Campbell, M. J., 1990, The radiochemical hydroxyl radical measurement method,Environ. Sci. Technol. 24, 1841–1847.

    Google Scholar 

  • Felton, C. C., Sheppard, J. C., and Campbell, M. J., 1992, Precision of the radiochemical OH measurement method,Atmos. Environ. 26A, 2105–2109.

    Google Scholar 

  • Fishman, J. and Kowalczyk, M., 1980, A brief overview of tropospheric chemistry, inThe CHON Photochemistry of the Troposphere, a colloquium. Nat. Centre Atmos. Res., Boulder, Col.

    Google Scholar 

  • Goldstein, S. D. and Hopke, P. K., 1985, Environmental neutralization of polonium-218,Environ. Sci. Technol. 19, 146–150.

    Google Scholar 

  • Hard, T. M., O'Brlen, R. J., Chan, C. Y., and Mehrabzadeh, A. A., 1984, Tropospheric free radical determination by FAGE,Environ. Sci. Technol. 18, 768–777.

    Google Scholar 

  • Hard, T. M., Chan, C. Y., Mehrabzadeh, A. A., Pan, W. H., and O'Brien, R. J., 1986, Diurnal cycle of tropospheric OH,Nature 322, 617–620.

    Google Scholar 

  • Hastie, D. R., Weissenmayer, M., Burrows, J. P., and Harris, G. W., 1991, Calibrated chemical amplifier for atmospheric RO x measurements,Anal. Chem. 63, 2048–2057.

    Google Scholar 

  • Heicklen, J., Westburg, C., and Cohen, N., 1969, Chemical Reactions in Urban Atmospheres (C. S. Tuesday, ed.) Symposium at General Motors Laboratories, Dearborn, MI, 55–58.

  • Hofzumahaus, A., Dorn, H.-P., Callies, J., Platt, U., and Ehhalt, D. H., 1991, Tropospheric OH concentration measurements by laser long-path absorption spectroscopy,Atmos. Environ. 25A, 2017–2022.

    Google Scholar 

  • Hubler, G., Perner, D., Platt, U., Tonnissen, A., and Ehhalt, D. H., 1984, Groundlevel OH radical concentration: new measurements by optical absorption,J. Geophys. Res. 89 (D1), 1309–1319.

    Google Scholar 

  • Hynes, A. J., Wine, P. H., and Semmes, D. H., 1986, Kinetics and mechanism of OH reactions with organic sulfides,J. Phys. Chem. 90, 4148–4156.

    Google Scholar 

  • Lind, S. C., 1961,Radiation Chemistry of Gases, Reinhold, New York.

    Google Scholar 

  • Maeda, T., Aoki, K., and Munemori, M., 1980, Chemiluminescence method for the determination of nitrogen dioxide,Anal. Chem. 52, 307–311.

    Google Scholar 

  • Mätzing, H., 1991, Chemical kinetics of flue gas cleaning by irradiation with electrons,Adv. Chem. Phys. 80, 315–402.

    Google Scholar 

  • Perner, D., Ehhalt, D. H., Paetz, H. W., Platt, U., Roth, E. P., and Volz, A., 1976, OH radicals in the lower troposphere,Geophys. Res. Lett. 3, 466–468.

    Google Scholar 

  • Pitts, J. N. Jr., Winer, A. M., Aschmann, S. M., Carter, W. P. L., and Atkinson, R., 1982, Experimental protocol for determining hydroxyl radical reaction rate constants, U.S. EPA project summary.

  • Platt, U., Rateike, M., Junkermann, W., Hofzumahaus, A., and Ehhalt, D. H., 1987, Detection of atmospheric OH radicals,Free Rad. Res. Comm. 3, 165–172.

    Google Scholar 

  • Platt, U., Rateike, M., Junkermann, W., Rudolph, J., and Ehhalt, D. H., 1988, New tropospheric OH measurements,J. Geophys. Res. 93 (D5), 5159–5166.

    Google Scholar 

  • Ramamurthi, M., Strydom, R., Hopke, P. K., and Holub, R. F., 1993, Nanometer and ultrafine aerosols from radon radiolysis,J. Aerosol Sci. 24, 393–407.

    Google Scholar 

  • Rodgers, M. O., Bradshaw, J. D., Sandholm, S. T., KeSheng, S., and Davis, D. D., 1985, A 2-λ laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric OH,J. Geophys. Res. 90(D7), 12819–12834.

    Google Scholar 

  • Shirinzadeh, B., Wang, C. C., and Deng, D. Q., 1987, Diurnal variation of the OH concentration in ambient air,Geophys. Res. Lett. 14, 123–126.

    Google Scholar 

  • Wang, C. C. and Davis, L. I. Jr., 1974, Measurement of hydroxyl concentrations in air using a tunable UV laser beam,Phys. Rev. Lett. 32, 349–352.

    Google Scholar 

  • Wang, C. C., Davis, L. I. Jr., and Selzer, P. M., 1981, Improved airborne measurements of OH in the atmosphere using the technique of laser-induced fluorescences,J. Geophys. Res. 86 (C2), 1181–1186.

    Google Scholar 

  • Ward, D. C. and Borak, T. B., 1991, Determination of time-varying222Rn concentrations using flow-through scintillation flasks,Health Phys. 61, 799–807.

    Google Scholar 

  • Weinstock, B., 1969, Carbon monoxide: residence time in the atmosphere,Science 166, 224–225.

    Google Scholar 

  • Wendel, G. J., Stedman, D. H., and Cantrell, C. A., 1983, Luminol-based nitrogen dioxide detector,Anal. Chem. 55, 937–940.

    Google Scholar 

  • Willis, G. and Boyd, A. W., 1976, Excitation in the radiation chemistry of inorganic gases,Int. J. Radiat. Phys. Chem. 8, 71–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Hopke, P.K. HO x production due to radon decay in air. J Atmos Chem 17, 375–390 (1993). https://doi.org/10.1007/BF00696855

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696855

Keywords

Navigation