Skip to main content
Log in

Methyl halide hydrolysis rates in natural waters

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

International regulations are under consideration for methyl bromide because of its high time dependent ozone depletion potential. Geocycling of the species is not well understood, and removal may occur in several types of natural water incuding the oceanic and those in soils. The hydrolysis reaction is a dominant loss pathway in environmental aqueous systems, but rate constants have generally been reported only in distilled water and at greater than room temperature. Here we present measurements in sodium chloride solutions and in seawater in addition to pure water, and at temperatures across the oceanographic range. The reaction could be followed even in solutions near the freezing point because product methanol was monitored in the method of initial rates. Time constants for methyl bromide hydrolysis fall between 10 and 1000 days over the temperatures of the sea, and are always within an order of magnitude of the fastest abiotic destruction mode, chlorination. Activation energies for the two processes are similar so that the ratio of their time scales does not vary with oceanic location. Hydrolysis rate constants are also listed for the closely related compounds methyls iodide and chloride. Solvolysis of the methyl halides in natural waters acts as a source of methanol to the ocean and atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, F. and Henschen, G., 1982, Positive ion composition measurements in the upper stratosphere: Evidence for an unknown aerosol component,Planetary and Space Sci. 30(1), 101–108.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J., 1989, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III,J. Phys. Chem. Ref. Data 18(2), 881–1097.

    Google Scholar 

  • Barbash, J. E. and Reinhard, M., 1989, Reactivity of sulfur nucleophiles toward halogenated orgnaic compounds in natural waters, in E. Saltzman and W. J. Cooper (eds.),Biogenic Sulfur in the Environment, American Chemical Society, Washington D.C., pp. 101–137.

    Google Scholar 

  • Blandamer, M. J., Burgess, J., Robertson, R. E., and Scott, J. M. W., 1982, Dependence of equilibrium and rate constants on temperature and pressure,Chem. Rev. 82(3), 259–286.

    Google Scholar 

  • Blandamer, M. J., Scott, J. M. W., and Robertson, R. E., 1985, Solvolysis revisited,Progress Phys. Org. Chem. 15, 149–196.

    Google Scholar 

  • Castro, C. E. and Belser, N. O., 1981, Photohydrolysis of methyl bromide and chloropicrin,J. Agric. Food Chem. 29(5), 1005–1008.

    Google Scholar 

  • Cicerone, R. J., Stedman, D. H., and Stolarski, R. S., 1975, Estimates of 1974 stratospheric concentration of gaseous chlorine compounds,Geophys. Res. Lett. 2, 219–222.

    Google Scholar 

  • Crutzen, P. J., 1988, Tropospheric ozone: An overview, in I. S. A. Isaksen (ed.),Tropospheric Ozone, D. Reidel, Dordrecht, pp. 3–32.

    Google Scholar 

  • Demore, W. B., Sander, S. P., Golden, D. M., Molina, M. J., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1990, Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 9. Jet Propulsion Laboratory publication 90-1.

  • Elliott, S., 1984, The chemistry of some atmospheric gases in the ocean, Ph.D. thesis, University of California Irvine.

  • Elliott, S. and Rowland, F. S., 1993, Nucleophilic substitution rates and solubilities for methyl halides in seawater,Geophys. Res. Lett. 20(11), 1043–1046.

    Google Scholar 

  • Fells, I. and Moelwyn-Hughes, E. A., 1959, The kinetics of the hydrolysis of the chlorinated methanes,J. Chem. Soc., 398–409.

  • Gentille, J. A., Ferraris, L., and Crespi, S., 1989, Degradation of methyl bromide in fresh water,Pesticide Science 25, 261–272.

    Google Scholar 

  • Hoyt, S. D. and Rasmussen, R. A., 1985, Determining trace gases in air and seawater,Adv. Chem. 209, 31–56.

    Google Scholar 

  • Laughton, P. M. and Robertson, R. E., 1956, Solvolysis in deuterium and hydrogen oxide,Can. J. Chem. 34, 1714–1718.

    Google Scholar 

  • Mabey, W. and Mill, T., 1978, Critical review of hydrolysis of organic compounds in water for environmental conditions,J. Phys. Chem. Ref. Data 7(2), 383–415.

    Google Scholar 

  • Mellouki, A., Talukdar, R., Schmoltner, A. M., Gierczak, T., Mills, M. J., Solomon, S., and Ravishankara, A. R., 1992, Atmospheric lifetimes and ozone depletion potentials of methyl bromide and dibromomethane,Geophys. Res. Lett. 19, 2059–2062.

    Google Scholar 

  • Moelwyn-Hughes, E. A., 1938, The hydrolysis of the methyl halides,Proc. Roy. Soc. A 164, 295–306.

    Google Scholar 

  • Oremland, R. S., Miller, L. G., Blunden, T. M., Culvertson, C. W., Coulatkis, M. D., and Jahnke, L. L., 1993a, Degradation of atmospheric halogenated methanes I: Activity of soil methanotrophic bacteria, submitted toEnviron. Sci. Technol.

  • Oremland, R. S., Miller, L. G., and Strohmaier, F. E., 1993b, Degradation of atmospheric halogenated methanes II: Chemical and bacterial attack on methyl bromide in anaerobic sediments, submitted toEnviron. Sci. Technol.

  • Oyama, S. T. and Somorjai, g. A., 1988, Homogeneous, heterogeneous, and enzymatic catalysis,J. Chem. Ed. 65(9), 765–769.

    Google Scholar 

  • Riley, J. P. and Skirrow, G., 1975,Chemical Oceanography, Academic Press, New York.

    Google Scholar 

  • Robertson, R. E., Heppolette, R. L., and Scott, J. M. W., 1959, A survey of thermodynamic parameters for solvolysis in water,Can. J. Chem. 37, 803–824.

    Google Scholar 

  • Singh, H. B. and Kanakidou, M., 1993, An investigation of the atmospheric sources and sinks of methyl bromide,Geophys. Res. Lett. 20(2), 133–136.

    Google Scholar 

  • Singh, H. B., Salas, L. J., and Stiles, R. E., 1983, Methyl halides in and over the Eastern Pacific,J. Geophys. Res. 88(C6), 3684–3690.

    Google Scholar 

  • Solomon, S. and Albritton, D. L., 1992, Time dependent ozone depletion potentials for short and long term forecasts,Nature 357, 33–37.

    Google Scholar 

  • Streitwieser, A., 1956, Solvolytic displacement reactions at saturated carbon atoms,Chem. Rev. 56, 571–752.

    Google Scholar 

  • Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942,The Oceans, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Wofsy, S. C., McElroy, M. B., and Yung, Y. L., 1975, The chemistry of atmospheric bromine,Geophys. Res. Lett. 2(6), 215–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, S., Rowland, F.S. Methyl halide hydrolysis rates in natural waters. J Atmos Chem 20, 229–236 (1995). https://doi.org/10.1007/BF00694495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694495

Key words

Navigation