Skip to main content
Log in

Divergent glial and neuronal differentiation in a cerebellar medulloblastoma in an organ culture system: In vitro occurrence of synaptic ribbons

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

A cerebellar medulloblastoma from a 2-year-old boy was maintained in vitro in an organ culture system for 6.5 months, and the explants studied by light and electron microscopy at different time intervals. The tumor cells progressively demonstrated divergent differentiation into astrocytes and neuroblasts. Astrocytic differentiation, confirmed by immunohistochemistry for GFA protein, became maximal after about 7 weeks in vitro and was thereafter maintained in different areas of the explants. Concomitantly, neuroblastic differentiation was expressed in other cells, with the progressive development of cell processes filled with many microtubules, of neuroblastic rosettes, of increased numbers of densecore and clear-centered vesicles, of occasional 9+0 cilia, and of synaptic ribbons appearing in vitro. Neuroblastic differentiation was most pronounced in 4- and 6-month-old explants, but synapses were not found. The differentiating features reported are in contrast to those of the orignial tumor, which was largely undifferentiated. The alternative interpretation of a divergent glial and pineocytic differentiation is also considered. These findings support the concept of the differentiating bipotential of the cerebellar medulloblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzarelli B, Muller J, Mirkin LD (1983) Medulloblastoma (?) with epithelioid features. Acta Neuropathol (Berl) 61:109–115

    Google Scholar 

  2. Barnard RO, Pambakian H (1980) Astrocytic differentiation in medulloblastoma. J Neurol Neurosurg Psychiatry 43:1041–1044

    Google Scholar 

  3. Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43:429–435

    Google Scholar 

  4. Bissell MG, Eng LF, Herman MM, Bensch KG, Miles LEM (1975) Quantiative increase of neuroglia-specific GFA protein in rat C-6 glioma cells in vitro. Nature 225:633–634

    Google Scholar 

  5. Bornstein MB (1958) Reconstituted rat-tail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest 7:134–137

    Google Scholar 

  6. Buda M, Klein DC (1978) A suspension culture of pinealocytes: regulation of N-acetyltransferase activity. Endocrinology 103:1483–1493

    Google Scholar 

  7. Camins MB, Cravioto HM, Epstein F, Ransohoff J (1980) Medulloblastoma: an ultrastructural study-evidence for astrocytic and neuronal differentiation. Neurosurgery 6:398–411

    Google Scholar 

  8. Coffin CM, Mukai K, Dehner LP (1983) Glial differentiation in medulloblastoms. Histogenetic insight, glial reaction, or invasion of brain? Am J Surg Pathol 7:555–565

    Google Scholar 

  9. Das GD (1976) Differentiation of Bergmann glial cells in the cerebellum: a Golgi study. Brain Res 110:199–213

    Google Scholar 

  10. Das GD, Lammert GL, McAllister JR (1974) Contact guidance and migrating cells in the developing cerebellum. Brain Res 69:13–29

    Google Scholar 

  11. Deck JHN, Eng LF, Bigbee J, Woodcock SM (1978) The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol (Berl) 42:183–190

    Google Scholar 

  12. DeGirolami U, Zvaigzne O (1973) Modification of the Achúcarro-Hortega pineal stain for paraffin-embedded formalin-fixed tissue. Stain Technol 48:48–50

    Google Scholar 

  13. Dickson DH, Ramsey MS, Tonus JG (1976) Synapse formation in retinoblastoma tumours. Br J Ophthalmol 60:371–375

    Google Scholar 

  14. Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc R Soc Lond [Biol] 166:80–111

    Google Scholar 

  15. Eng LF, Rubinstein LJ (1978) Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem 26:413–522

    Google Scholar 

  16. Ermel AE, Brucher JM (1974) Arguments ultrastructuraux en faveur de l'apparatenance du médulloblastome à la lignée neuronale. Acta Neurol Belg 74:208–220

    Google Scholar 

  17. Fujita S (1967) Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J Cell Biol 32:277–287

    Google Scholar 

  18. Fujita S, Shimada M, Nakamura T (1966) H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and internal granular layers of the mouse cerebellum. J Comp Neurol 121:191–208

    Google Scholar 

  19. Hassoun J, Gambarelli D, Peragut JC, Toga M (1983) Specific ultrastructural markers of human pinealomas. A study of four cases. Acta Neuropathol (Berl) 62:31–40

    Google Scholar 

  20. Herman MM, Rubinstein LJ (1978) Divergent glial and neuronal differentiation in a human medulloblastoma maintained in an organ culture system. J Neuropathol Exp Neurol 37:627

    Google Scholar 

  21. Herrick M, Rubinstein LJ (1979) The cytological differentiating potential of pineal parenchymal neoplasms (true pinealomas). A clinical study of 28 tumours. Brain 102:289–320

    Google Scholar 

  22. Hewing M (1979) Synaptic ribbons during postnatal development of the pineal gland in the golden hamster. Cell Tissue Res 199:473–482

    Google Scholar 

  23. Hirano A, Shin W-Y (1979) Unattached presynaptic terminals in a cerebellar neuroblastoma in the human. Neuropathol Appl Neurobiol 5:63–70

    Google Scholar 

  24. Horten BC, Rubinstein LJ (1976) Primary cerebral neuroblastoma. A clinicopathological study of 35 cases. Brain 99:735–756

    Google Scholar 

  25. Karasek M (1974) Ultrastructure of rat pineal gland in organ culture; influence of norepinephrine, dibutyryl cyclic adenosine 3′,5′-monophosphate and adenohypophysis. Endokrinologie 64:106–114

    Google Scholar 

  26. Karasek M (1976) Quantiative changes in number of “synaptic” ribbons in rat pinealocytes after orchidectomy and in organ culture. J Neural Transm 38:149–157

    Google Scholar 

  27. Karasek M, King TS, Brokaw J, Hansen JT, Petterborg LJ, Reiter RJ (1983) Inverse correlation between “synaptic” ribbon number and the density of adrenergic nerve endings in the pineal gland of various mammals. Anat Rec 205:93–99

    Google Scholar 

  28. Karasek M, Vollrath L (1982) “Synaptic” ribbons and spherules of the rat pineal gland: day/night changes in vitro? Exp Brain Res 46:205–208

    Google Scholar 

  29. Kidd M (1962) Electron microscopy of the inner plexiform layer of the retina in the cat and the pigeon. J Anat 96:179–187

    Google Scholar 

  30. Kersting G (1968) Tissue culture of human gliomas. In: Krayenbühl H, Maspes PE, Sweet WH (eds) Progr Neurol Surg, vol 2. Yearbook Medical Publishers, Chicago, pp 165–202

    Google Scholar 

  31. King TS, Dougherty WJ (1982) Effect of denervation on “synaptic” ribbon populations in the rat pineal gland. J Neurocytol 11:19–28

    Google Scholar 

  32. Lewis PD, Fülöp Z, Hajós F, Balázs R, Woodhams PL (1977) Neuroglia in the internal granular layer of the developing rat cerebellar cortex. Neuropathol Appl Neurobiol 3:183–190

    Google Scholar 

  33. Liao CL, Eng LF, Herman MM, Bensch KG (1978) Glial fibrillary acidic protein — solubility characteristics, relation to cell growth phases and cellular localization in rat C-6 glioma cells: an immunoradiometric and immunohistologic study. J Neurochem 30:1181–1186

    Google Scholar 

  34. Liss L (1969) Glial and parenchymal neoplasms in tissue culture. In: Scharenberg K, Liss L (eds) Neuroectodermal tumors of the central and peripheral nervous system, Chapt. 21. Williams and Wilkins, Baltimore

    Google Scholar 

  35. Lumsden CE (1971) The study by tissue culture of tumours of the nervous system. In: Russell DS, Rubinstein LJ (eds) Pathology of tumors of the nervous system, 3rd edn, Chapt. 14. Edward Arnold, London

    Google Scholar 

  36. Lumsden CE (1974) Tissue culture of brain tumours. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, Vol 17, Chapt. 2. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  37. Mannoji H, Takeshita I, Fukui M, Ohta M, Kitamura K (1981) Glial fibrillary acidic protein in medulloblastoma. Acta Neuropathol (Berl) 55:63–69

    Google Scholar 

  38. Markesbery WR, Walsh JW, Frye MD (1980) Ultrastructural study of the medulloblastoma in tissue culture. J Neuropathol Exp Neurol 39:30–41

    Google Scholar 

  39. Matakas F, Cervós-Navarro J, Gullotta F (1970) The ultrastructure of medulloblastomas. Acta Neuropathol (Berl) 16:271–284

    Google Scholar 

  40. Matsushima S, Morisawa Y, Aida I, Kazuhiro A (1983) Circadian variations in pinealocytes of the Chinese hamster, Cricetulus griseus. A quantitative electron-microscopic study. Cell Tissue Res 228:231–244

    Google Scholar 

  41. Moss TH (1983) Evidence for differentiation in medulloblastomas appearing primitive on light microscopy: an ultrastructural study. Histopathology 7:919–930

    Google Scholar 

  42. Müller W, Schaefer HE (1974) Beitrag zur morphologischen Onkotype des Medulloblastoms. Acta Neuropathol (Berl) 30:51–61

    Google Scholar 

  43. Palay SL, Chan-Palay V (1974) Cerebellar cortex. Cytology and organization. Springer-Verlag, Berlin Heidelberg, New York

    Google Scholar 

  44. Palmer JO, Kasselberg AG, Netsky MG (1981) Differentiation of medulloblastoma. Studies including immunohistochemical localization of glial fibrillary acidic protein. J Neurosurg 55:161–169

    Google Scholar 

  45. Pasquier B, Lachard A, Pasquier D, Couderc P, Delpech B, Courel MN (1983) Protéine gliofibrillaire acide (GFA) et tumeurs nerveuses centrales. Etude immunohistochimique d'une série de 207 cas. IIe partie: Médulloblastomes. Hémangioblastomes. Autres tumeurs. Discussion. Ann Pathol 3:203–211

    Google Scholar 

  46. Pearl GS, Takei Y (1981) Cerebellar “neuroblastoma”. Nosology as it relates to medulloblastoma. Cancer 47:772–779

    Google Scholar 

  47. Pévet P (1979) Secretory processes in the mammalian pinealocyte under natural and experimental conditions. Progr Brain Res 52:149–192

    Google Scholar 

  48. Piekut DT, Knigge KM (1978) Primary cultures of dispersed cells of rat pineal gland. Cell Tissue Res 188:285–297

    Google Scholar 

  49. Roessmann U, Velasco ME, Gambetti P, Autilio-Gambetti L (1983) Neuronal and astrocytic differentiation in human neuroepithelial neoplasms. An immunohistochemical study. J Neuropathol Exp Neurol 42:113–121

    Google Scholar 

  50. Romijn HJ (1975) The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, continuous illumination, and continous darkness. J Neural Transm 36:183–194

    Google Scholar 

  51. Romijn HJ, Gelsema AJ (1976) Electron microscopy of the rabbit pineal organ in vitro. Evidence of norepinephrine-stimulated secretory activity of the Golgi apparatus. Cell Tissue Res 172:365–377

    Google Scholar 

  52. Rowe V, Neale EA, Avins L, Guroff G, Schrier BK (1977) Pineal gland cells in culture. Morphology, biochemistry, differentiation, and co-culture with sympathetic neurons. Exp Cell Res 104:345–356

    Google Scholar 

  53. Rowe V, Steinberg V, Parr J (1981) Pineal cells in monolayer culture. Adv Cell Neurobiol 2:491–510

    Google Scholar 

  54. Rubinstein LJ (1975) The cerebellar medulloblastoma: its origin, differentiation, morphological variants, and biological behavior. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol. 18, Chapt. 9. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  55. Rubinstein LJ, Herman MM, Foley VL (1973) In vitro characteristics of human glioblastomas maintained in organ culture systems. Light microscopy observations. Am J Pathol 71:61–80

    Google Scholar 

  56. Rubinstein LJ, Herman MM, Hanbery JW (1974) The relationship between differentiating medulloblastoma and dedifferentiating diffuse cerebellar astrocytoma. Light, electron microscopic, tissue, and organ culture observations. Cancer 33:675–690

    Google Scholar 

  57. Schindler E, Gullotta F (1983) Glial fibrillary acidic protein in medulloblastomas and other embryonic CNS tumours of children. Virchows Arch [Pathol Anat] 398:263–275

    Google Scholar 

  58. Shin W-Y, Laufer H, Lee Y-C, Aftalion B, Hirano A, Zimmerman HM (1978) Fine structure of a cerebellar neuroblastoma. Acta Neuropathol (Berlin) 42:11–13

    Google Scholar 

  59. Sipe JC, Rubinstein LJ, Herman MM, Bignami A (1974) Ethylnitrosourea-induced astrocytomas. Morphologic observations on rat tumors maintained in tissue and organ culture systems. Lab Invest 31:571–579

    Google Scholar 

  60. Sjöstrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2:122–170

    Google Scholar 

  61. Smith CA, Sjöstrand FS (1961) A synaptic structure in the hair cells of the guinea pig cochlea. J Ultrastruct Res 5:184–192

    Google Scholar 

  62. Steinberg V, Rowe V, Watanabe I, Parr J (1981) Effects of norepinephrine and dibutyryl adenosine 3′,5′-cyclic monophosphate on the ultrastructure of pineal cells in monolayer culture. Cell Tissue Res 216:181–191

    Google Scholar 

  63. Steinberg VI, Rowe V, Watanabe I, Parr J, Degenhardt M (1981) Morphologic development of neonatal rat pinealocytes in monolayer culture. Cell Tissue Res 220:337–347

    Google Scholar 

  64. Swarz JR, Del Cerro M (1977) Lack of evidence for glial cells originating from the external granular layer in mouse cerebellum. J Neurocytol 6:241–250

    Google Scholar 

  65. Vanden Berg SR, Ludwin SK, Herman MM, Bignami A (1976) In vitro astrocytic differentiation from embryoid bodies of an experimental mouse testicular teratoma. Am J Pathol 83:197–212

    Google Scholar 

  66. Varakis JN, ZuRhein GM (1976) Experimental pineocytoma of the Syrian hamster induced by a human papovavirus (JC). A light and electron microscopic study. Acta Neuropathol (Berl). 35:243–264

    Google Scholar 

  67. Velasco ME, Dahl D, Roessmann U, Gambetti P (1980) Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms. Cancer 45:484–494

    Google Scholar 

  68. Voigt WH (1968) Elektronenmikroskopische Beobachtungen an menschlichen Medulloblastomen. Dtsch Z Nervenheilkd 192:290–309

    Google Scholar 

  69. Vollrath L (1973) Synaptic ribbons of a mammalian pineal gland circadian changes. Z Zellforsch 145:171–183

    Google Scholar 

  70. Vollrath L, Huss H (1973) The synaptic ribbons of the guinea-pig pineal gland under normal and experimental conditions. Z Zellforsch 139:417–429

    Google Scholar 

  71. Vollrath L, Schultz RL, McMillan PJ (1983) “Synaptic” ribbons and spherules of the guinea pig pineal gland: inverse day/night differences in number. Am J Anat 168:67–74

    Google Scholar 

  72. Vraa-Jensen J, Herman MM, Rubinstein LJ, Bignami A (1976) In vitro characteristics of a fourth ventricle ependymoma maintained in organ culture systems: light and electron microscopy observations. Neuropathol Appl Neurobiol 2:349–364

    Google Scholar 

  73. Waldbaur H, Gottschaldt M, Schmidt H, Neuhäuser G (1976) Medulloblastom des Kleinhirns und Pineoblastom bei eineiigen Zwillingen. Klin Paediatr 188:366–371

    Google Scholar 

  74. Weichselbaum RR, Liszczak TM, Phillips JP, Little JB, Epstein J, Kornblith PL (1977) Characterization and radiobiologic parameters of medulloblastoma in vitro. Cancer 40:1087–1096

    Google Scholar 

  75. Wolfe DE (1965) The epiphyseal cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Progr Brain Res 10:332–386

    Google Scholar 

  76. Yagishita S, Itoh Y, Chiba Y, Yamashita T, Nakazima F, Kuwabara T (1980) Cerebellar neuroblastoma. A light and ultrastructural study. Acta Neuropathol (Berl) 50:139–142

    Google Scholar 

  77. Yagishita S, Itho Y, Chiba Y, Kuwana N (1982) Morphological investigations on cerebellar “neuroblastoma” group. Acta Neuropathol (Berl) 56:22–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by research grant CA 31271 from the National Cancer Institute, US Department of Health and Human Services. Presented in part at the VIIIth International Congress of Neuropathology, Washington, DC, September 24–29, 1978

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, M.M., Rubinstein, L.J. Divergent glial and neuronal differentiation in a cerebellar medulloblastoma in an organ culture system: In vitro occurrence of synaptic ribbons. Acta Neuropathol 65, 10–24 (1984). https://doi.org/10.1007/BF00689823

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689823

Key words

Navigation