Skip to main content
Log in

D-Lactate formation, D-LDH activity and glycolytic potential ofHelix pomatia L.

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    InHelix pomatia the affinity of LDH for pyruvate is strongly temperature-dependent, ranging at pH 6.0 from 0.058 mM at 10°C to 0.124 mM at 25°C, and at pH 7.0 from 0.072 to 0.189 mM.

  2. 2.

    The affinity of the enzyme for D-lactate is 30–60 times lower than for pyruvate (xxx xxx ofK m=3.5 mM at 20°C) and is not temperature-dependent.

  3. 3.

    All five isoenzymes of LDH can be detected electrophoretically in ammonium sulfate precipitates of homogenates of the snail foot. Isoenzyme 4 was always present, 3 and 5 occurred in one-half and two-thirds respectively of all specimens investigated, while 1 and 2 could be detected only in summer animals.

  4. 4.

    Total LDH activity in winter animals is twice as high as in summer animals.

  5. 5.

    In hibernating animals the steady state concentration of D-lactate in the foot is 1.35 mM. In the excised foot, at room temperature D-lactate is formed at an average rate of 0.17 μmoles·min−1·(g fresh weight)−1.

  6. 6.

    Anaerobic pyruvate flux in the excised foot is about 20 times higher than aerobic pyruvate flux as determined by measuring the oxygen consumption of the hibernating animal. Maximum LDH activity in vitro exceeds the activity measured in vivo by a factor of 100, whereas in vertebrate muscles the factor is close to 10.

The findings indicate that the snail possesses a high glycolytic potential which may be used for the anaerobic production of energy even when the animal's environment appears to offer an adequate oxygen supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beis, I., Newsholme, E.A.: The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J.152, 23–32 (1975)

    Google Scholar 

  • Crabtree, B., Newsholme, E.A.: The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and glycerol 3-phosphate dehydrogenase in muscle from vertebrates and invertebrates. Biochem. J.126, 49–58 (1972)

    Google Scholar 

  • Danforth, W.H.: Activation of glycolytic pathway in muscle. In: Control of energy metabolism (eds. B. Chance, R.W. Estabrook, J.R. Williamson), pp. 287–297. New York: Academic Press 1965

    Google Scholar 

  • De Zwaan, A., Kluytmans, J.H.F.M., Zandee, D.I.: Facultative anaerobiosis in molluscs. Biochem. Soc. Symp.41, 133–168 (1976)

    Google Scholar 

  • De Zwaan, A., Zandee, D.I.: The utilization of glycogen and accumulation of some intermediates during anaerobiosis inMytilus edulis L. Comp. Biochem. Physiol.43B, 47–54 (1972)

    Google Scholar 

  • Fischer, P.-H.: Recherches sur la vie ralentie de l'Escargot (Helix pomatia L.). J. Conchyliologie75, 111–200 (1931)

    Google Scholar 

  • Gäde, G., Zebe, E.: Über den Anaerobiosestoffwechsel von Molluskenmuskeln. J. comp. Physiol.85, 291–301 (1973)

    Google Scholar 

  • Gnaiger, E.: Thermodynamic consideration of invertebrate anoxibiosis. In: Application of calorimetry in life sciences (eds. L. Lamprecht, B. Schaarschmidt), pp. 281–303. Berlin: Walter de Gruyter 1977

    Google Scholar 

  • Grieshaber, M., Gäde, G.: The biological role of octopine in the squid,Loligo vulgaris (Lamarck). J. comp. Physiol.108, 225–232 (1976)

    Google Scholar 

  • Grieshaber, M., Gäde, G.: Energy supply and the formation of octopine in the adductor muscle of the scallop,Pecten jacobaeus (Lamarck). Comp. Biochem. Physiol.58B, 249–252 (1977)

    Google Scholar 

  • Hammen, C.S.: Succinate and lactate oxidoreductases of bivalve molluscs. Comp. Biochem. Physiol.50B, 407–412 (1975)

    Google Scholar 

  • Hochachka, P.W., Lewis, J.K.: Interacting effects of pH and temperature on theK m-values for fish tissue lactate dehydrogenases. Comp. Biochem. Physiol.39B, 925–933 (1971)

    Google Scholar 

  • Hochachka, P.W., Mustafa, T.: Invertebrate facultative anaerobiosis. Science178, 1056–1060 (1972)

    Google Scholar 

  • Kerkut, G.A., Laverack, M.S.: The respiration ofHelix pomatia; a balance sheet. J. exp. Biol.34, 97–105 (1957)

    Google Scholar 

  • Kluytmans, J.H., Veenhof, P.R., De Zwaan, A.: Anaerobic production of volatile fatty acids in the sea musselMytilus edulis L. J. comp. Physiol.104, 71–78 (1975)

    Google Scholar 

  • Livingstone, D.R., Bayne, B.L.: Pyruvate kinase from the mantle tissue ofMytilus edulis L. Comp. Biochem. Physiol.48B, 481–497 (1974)

    Google Scholar 

  • Livingstone, D.R., Bayne, B.L.: Responses ofMytilus edulis L. to low oxygen tension: Anaerobic metabolism of the posterior adductor muscle and mantle tissues. J. comp. Physiol.114, 143–155 (1977)

    Google Scholar 

  • Long, G.L.: The stereospecific distribution and evolutionary significance of invertebrate lactate dehydrogenases. Comp. Biochem. Physiol.55B, 77–83 (1976)

    Google Scholar 

  • Meyer, S.G.E.: Concentrations of some glycolytic and other intermediates in larvae ofCallitroga macellaria (F.) (Diptera, Calliphoridae) during anaerobiosis. Comp. Biochem. Physiol.58B, 49–55 (1977)

    Google Scholar 

  • Michejda, J.W., Wala, R., Zerbe, T., Tilgner, H.: D-lactate dehydrogenase in foot and heart muscle of a snail,Helix pomatia L. Bull. Soc. Amis Sci. Poznań, Ser. C9, 181–189 (1969)

    Google Scholar 

  • Moon, T.W., Hulbert, W.C., Mustafa, T., Mettrick, D.F.: A study of lactate dehydrogenase and malate dehydrogenase in adultHymenolepsis diminuta (Cestoda). Comp. Biochem. Physiol.56B, 249–254 (1977)

    Google Scholar 

  • Nopp, H.: Physiologische Aspekte des Trockenschlafes der Landschnecken. Sitz.-Ber. Österr. Ak. Wiss., mathem.-naturw. Kl.Abt. I.182, 1–75 (1974)

    Google Scholar 

  • Oudejans, R.C.H.M., van der Horst, D.J.: Aerobic-anaerobic biosynthesis of fatty acids and other lipids from glycolytic intermediates in the pulmonate land snailCepaea nemoralis (L.). Comp. Biochem. Physiol.47B, 139–147 (1974)

    Google Scholar 

  • Pütter, A.: Vergleichende Physiologie, 721 pp. Jena: Gustav Fischer 1911

    Google Scholar 

  • Schmidt-Nielsen, K., Taylor, C.R., Shkolnik, A.: Desert snails: problems of heat, water and food. J. exp. Biol.55, 385–398 (1971)

    Google Scholar 

  • Schöttler, U., Schroff, G.: Untersuchungen zum anaeroben Glykogenabbau beiTubifex tubifex M. J. comp. Physiol.108, 243–254 (1976)

    Google Scholar 

  • Schroff, G., Schöttler, U.: Anaerobic reduction of fumarate in the body wall musculature ofArenicola marina (Polychaeta). J. comp. Physiol.116, 325–336 (1977)

    Google Scholar 

  • Storey, K.B.: Lactate dehydrogenase in tissue extracts of the land snail,Helix aspersa: unique adaptation of LDH subunits in a facultative anaerobe. Comp. Biochem. Physiol.56B, 181–187 (1977)

    Google Scholar 

  • Valkirs, A.: Temperature and pH effects on catalytic properties of lactate dehydrogenase from pelagic fish. Comp. Biochem. Physiol.59A, 31–36 (1978)

    Google Scholar 

  • Van der Horst, J.D.: In vivo biosynthesis of fatty acids in the pulmonate land snailCepaea nemoralis under anoxic conditions. Comp. Biochem. Physiol.47B, 181–187 (1974)

    Google Scholar 

  • Wieser, W., Schuster, M.: The relationship between water content, activity and free amino acids inHelix pomatia L. J. comp. Physiol.98, 169–181 (1975)

    Google Scholar 

  • Wijsman, R.C.M.: pH fluctuations inMytilus edulis L. in relation to shell movements under aerobic and anaerobic conditions. Proc. 9th Europ. mar. biol. Symp. (ed. H. Barnes), pp. 139–149. Aberdeen: University Press 1975

    Google Scholar 

  • Wilkinson, J.: Lactate dehydrogenase. In: Isozymes (ed. C.L. Markert), pp. 134–204. London: Chapman and Hall 1970

    Google Scholar 

  • Williamson, D.H., Brosnan, J.T.: Metabolit-Gehalte tierischer Gewebe. In: Methoden der enzymatischen Analyse (ed. H.U. Bergmeyer), 2. Aufl., Band II, pp. 2187–2220. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Wilps, H., Zebe, E.: The end-products of anaerobic carbohydrate metabolism in the larvae ofChironomus thummi thummi. J. comp. Physiol.112, 263–272 (1976)

    Google Scholar 

  • Winer, A.D., Schwert, G.W.: Lactic dehydrogenase: The influence of pH on kinetics of the reaction. J. biol. Chem.231, 1065–1083 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieser, W., Wright, E. D-Lactate formation, D-LDH activity and glycolytic potential ofHelix pomatia L.. J Comp Physiol B 126, 249–255 (1978). https://doi.org/10.1007/BF00688934

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688934

Keywords

Navigation