Skip to main content
Log in

Monosynaptic entrainment of an endogenous pacemaker network: A cellular mechanism for von Holst's magnet effect

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The pyloric rhythm of the lobster (Panulirus interruptus, Palinurus vulgaris) stomatogastric ganglion is generated by a set of 3 electrically coupled endogenously bursting neurons. The phasic coordinating effects of monosynaptic excitatory (EPSP) and inhibitory (IPSP) inputs to these neurons were examined in isolated nervous systems.

  2. 2.

    Periodic stimulation of both inputs at frequencies near the endogenous frequency of the pacemakers can produce large cycle by cycle variations in the burst period of the system (Fig. 4). Similar variation in PD burst period is also observed in intact freely behaving animals (Fig. 2).

  3. 3.

    The effect of both inputs depends on the phase at which they occur in the endogenous pacemaker cycle. Both EPSP's and IPSP's can advance or delay subsequent bursts. The two inputs exhibit qualitatively different characteristic phase response curves (Figs. 5, 6).

  4. 4.

    Both EPSP's and IPSP's can entrain the endogenous rhythm (Figs. 7, 8). The coordinating effects of EPSP's are stronger when their repetition frequency is slightly higher than the endogenous pacemaker frequency, while those produced by IPSP's are stronger when the repetition frequency of the input is slightly slower than the repetition frequency of the oscillator.

  5. 5.

    The phase relationships of the discharge of the pacemakers in the stimulus cycle are qualitatively different when the cyclic stimulus is slower or faster than the endogenous rhythm for both types of inputs (Fig. 9). The entrainment of the oscillator by EPSP inputs which repeat at a frequency which is greater than the endogenous frequency can be attributed to the input triggering the burst of spikes at a fixed latency (Fig. 10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IVN :

inferior ventricular nerve

LP :

lateral pyloric motor neuron

PD :

pyloric dilator motor neuron

PY :

pyloric motor neuron

VD :

ventricular dilator motor neuron

References

  • Arvanataki, A., Chalazonitis, N.: Electrical properties and temporal organization in oscillatory neurons. In: Symposium on neurobiology of invertebrates. Salanki, J. (ed.), pp. 169–199. Budapest: Akademiai Kiado 1967

    Google Scholar 

  • Aschoff, J.: Crcadian clocks. Amsterdam: North-Holland Publishing Co. 1965

    Google Scholar 

  • Ayers, J.L., Clarac, F.: Neuromuscular strategies underlying different behavioral acts in a multi-functional crustacean leg joint. J. comp. Physiol.128, 81–94 (1978)

    Google Scholar 

  • Ayers, J.L., Davis, W.J.: Neuronal control of locomotion in the lobster. I. Motor programs for forward and backward walking. J. comp. Physiol.115, 1–23 (1977)

    Google Scholar 

  • Ayers, J.L., Selverston, A.I.: Synaptic control of an endogenous pacemaker network. J. Physiol. (Paris)73, 453–461 (1977)

    Google Scholar 

  • Barker, J.L., Gainer, H.: Studies on bursting pacemaker potential activity in molluskan neurons. I. Membrane properties and ionic contributions. Brain Res.84, 461–477 (1975)

    Google Scholar 

  • Barnes, W.J.P.: Leg coordination during walking in the crab,Uca pugnax. J. comp. Physiol.96, 237–252 (1975)

    Google Scholar 

  • Chalazonitis, N.: Effects of changes in pCO2 and pO2 on rhythmic potentials from giant neurons. Ann. New York Acad. Sci.109, 458–479 (1963)

    Google Scholar 

  • Dando, M., Selverston, A.I.: Command fibers from the supraesophageal ganglion to the stomatogastric ganglion inPanulirus argus. J. comp. Physiol.78, 138–175 (1972)

    Google Scholar 

  • Davis, W.J.: Organizational concepts in the central motor networks of invertebrates. In: Neural control of locomotion. Herman, R.M. et al. (eds), pp. 265–292. New York: Plenum Press 1976

    Google Scholar 

  • Davis, W.J.: Quantitative analysis of swimmeret beating in the lobster. J. Exp. Biol.48, 643–662 (1968)

    Google Scholar 

  • Eckert, R., Lux, H.D.: A voltage-sensitive persistant calcium conductance in neuronal somata ofHelix. J. Physiol.254, 129–151 (1976)

    Google Scholar 

  • Enright, J.T.: Synchronization and ranges of entrainment. In: Circadian clocks. Aschoff, J. (ed.). Amsterdam: North-Holland Publishing Co. 1965

    Google Scholar 

  • Evoy, W.H., Fourtner, C.R.: Crustacean walking. In: Control of posture and locomotion. Advances in behavioral biology, Vol. 7. New York: Plenum Press 1973

    Google Scholar 

  • Friesen, W.O., Poon, M., Stent, G.S.: An oscillatory neuronal circuit generating a locomotory rhythm. Proc. Nat. Acad. Sci.73, 3734–3738 (1976)

    Google Scholar 

  • Getting, P.A., Willows, A.O.D.: Modification of neuron properties by electrotonic synapses. II. Burst formation by electrotonic synapses. J. Neurophysiol.37, 858–868 (1974)

    Google Scholar 

  • Gola, M.: Neurons à ondes-salves des mollusques. Variations cycliques lentes des conductances ioniques. Pflügers Arch.352, 17–36 (1974)

    Google Scholar 

  • Gola, M.: Electrical properties of molluskan bursting pacemaker neurons. In: Neurobiology of invertebrates. Gastropoda brain, Salanki, J. (ed.), pp. 381–423. Budapest: Akademiai Kiado 1975

    Google Scholar 

  • Gola, M., Ducreux, C., Chagneux, H.: Ionic mechanism of slow potential wave production in barium-treatedAplysia neurons. J. Physiol. (Paris)73, 407–440 (1977)

    Google Scholar 

  • Grillner, S.: Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol. Rev.55, 247–304 (1975)

    Google Scholar 

  • Hartline, D.K., Gassie, D.V., Sirchia, C.D.: Burst reset properties in an endogenously bursting network driver cell. (in preparation)

  • Heyer, C.B., Lux, H.D.: Properties of a facilitating current in pacemaker neurons of the snail,Helix pomatia. J. Physiol. (Lond.)262, 349–382 (1976)

    Google Scholar 

  • Holst, E. von: Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebn. Physiol.42, 288–306 (1939)

    Google Scholar 

  • Holst, E. von: The behavioral physiology of animals and man: the collected papers of Erich von Holst, Vol. 1 (translated by Robert Martin). University of Miami Press, Coral Gables, Printers; Methuen and Co. Ltd., London, Publishers 1973

    Google Scholar 

  • Hughes, G.M., Wiersma, C.A.G.: The coordination of swimmeret movements in the crayfishProcambarus clarkii (Girard). J. Exp. Biol.37, 657–670 (1960)

    Google Scholar 

  • Junge, D., Stephens, C.L.: Cyclic variation of potassium conductance in a burst generating neuron inAplysia. J. Physiol.235, 155–181 (1974)

    Google Scholar 

  • Kater, S.B., Kaneko, C.R.S.: An endogenously bursting neuron in the gastropod mollusc,Helisoma trivolvis. Characterization of activity in vivo. J. comp. Physiol.79, 1–14 (1972)

    Google Scholar 

  • Kennedy, D., Davis, W.J.: The organization of invertebrate nervous systems. In: Handbook of physiology, Vol. 2, Neurophysiology. 2. edition. Kandel, E.R. (ed). Bethesda: American Physiological Society (in press) 1978

    Google Scholar 

  • Kulagin, A.S., Shik, M.L.: Interaction of symmetrical limbs during controlled locomotion. Biofizika15, 164–170 (1970)

    Google Scholar 

  • Maynard, D.M., Dando, M.R.: The structure of the stomatogastric neuromuscular system inCallinectes sapidus, Homarus americanus andPanulirus argus. Phil. Trans. R. Soc. B268, 161–220 (1974)

    Google Scholar 

  • Maynard, D.M., Selverston, A.I.: Organization of the stomatogastric system of the spiny lobster. IV. The pyloric system. J. comp. Physiol.100, 161–182 (1975)

    Google Scholar 

  • MacMillan, D.L.: A physiological analysis of walking in the American lobster (Homarus americanus). Phil. Trans. R. Soc. B270, 1–59 (1975)

    Google Scholar 

  • McAllister, R.E., Noble, D., Tsien, R.W.: Reconstruction of the electrical activity of cardiac Purkinje fibers. J. Physiol.251, 1–59 (1975)

    Google Scholar 

  • Meech, R.W., Standen, N.B.: Potassium activation inHelix aspersa under voltage clamp: a component mediated by calcium influx. J. Physiol.249, 211–239 (1975)

    Google Scholar 

  • Mendelson, M.: Oscillator neurons in crustacean ganglia. Science171, 1170–1173 (1971)

    Google Scholar 

  • Miller, S., van der Burg, J., van der Meche, F.G.A.: Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res.91, 217–237 (1975a)

    Google Scholar 

  • Miller, S., van der Burg, J., van der Meche, F.G.A.: Locomotion in the cat: Basic programmes of movement. Brain Res.91, 239–257 (1975b)

    Google Scholar 

  • Morris, J., Maynard, D.M.: Recordings from the stomatogastric nervous system in intact lobsters. Comp. Biochem. Physiol.33, 969–974 (1970)

    Google Scholar 

  • Noble, D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev.46, 1–49 (1966)

    Google Scholar 

  • Orlovsky, G.N., Shik, M.L.: Neurophysiology of locomotor automatism. Physiol. Rev.52, 465–501 (1976)

    Google Scholar 

  • Pavlidis, T.: Biological oscillators: their mathematical analysis. New York: Academic Press 1973

    Google Scholar 

  • Pavlidis, T., Pinsker, H.M.: Oscillator theory and neurophysiology. Fed. Proc.36, 2033–2035 (1977)

    Google Scholar 

  • Pearson, K.G., Fourtner, C.R.: Non-spiking interneurons in the walking system of the cockroach. J. Neurophysiol.38, 33–52 (1975)

    Google Scholar 

  • Pearson, K.G., Iles, J.F.: Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. J. Exp. Biol.58, 725–744 (1973)

    Google Scholar 

  • Pinsker, H.M.: Synaptic modulation of endogenous neuronal oscillators. Fed. Proc.36, 2045–2049 (1977)

    Google Scholar 

  • Pinsker, H.M.:Aplysia bursting neurons as endogenous oscillators. I. Phase response curves for pulsed inhibitory input. J. Neurophysiol.40, 527–543 (1977a)

    Google Scholar 

  • Pinsker, H.M.:Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. J. Neurophysiol.40, 544–552 (1977b)

    Google Scholar 

  • Powers, L.W.: Gastric mill rhythms in intact crabs. Comp. Biochem. Physiol.46a, 767–783 (1973)

    Google Scholar 

  • Reid, J.V.O.: The cardiac pacemaker: Effects of regularly spaced nervous input. Am. Heart J.78, 58–64 (1969)

    Google Scholar 

  • Russel, D. F.: Rhythmic excitatory inputs to the lobster stomatogastric ganglion. Brain Res.101, 582–588 (1976)

    Google Scholar 

  • Selverston, A.I.: Structural and functional basis of motor pattern generation in the stomatogastric ganglion of the lobster. Am. Zool.14, 957–972 (1974)

    Google Scholar 

  • Selverston, A.I.: Mechanisms for the production of rhythmic behavior in crustaceans. In: Identified neurons and the behavior of arthropods. Hoyle, G. (ed.), New York: Plenum Press (in press)

  • Selverston, A.I., King, D.F., Russel, D.F., Miller, J.P.: The stomatogastric nervous system: Structure and function of a small neural network. Progr. Neurobiol.7, 215–290 (1976)

    Google Scholar 

  • Stein, P.S.G.: Intersegmental coordination of swimmeret motoneuron activity in crayfish. J. Neurophysiol.34, 310–318 (1971)

    Google Scholar 

  • Stein, P.S.G.: Mechanisms of interlimb phase control. In: Neural control of locomotion. Herman, R.M. et al. (eds.), pp. 465–488. New York: Plenum Press 1976

    Google Scholar 

  • Stein, P.S.G.: Application of the mathematics of coupled oscillator systems to the analysis of the neural control of locomotion. Fed. Proc.36, 2056–2059 (1977a)

    Google Scholar 

  • Stein, P.S.G.: A comparative approach to the neural control of locomotion. In: Identified neurons and the behavior of arthropods, G. Hoyle (ed.). New York: Plenum Press (in press) 1977

    Google Scholar 

  • Thompson, S.H., Smith, S.J.: Depolarizing afterpotentials and burst production in molluskan pacemaker neurons. J. Neurophysiol.39, 153–161 (1977)

    Google Scholar 

  • Wendler, G.: The coordination of walking movements in arthropods. Symp. Soc. Exp. Biol.20, 229–249 (1966)

    Google Scholar 

  • Wendler, G.: The influence of proprioceptive feedback on locust flight coordination. J. comp. Physiol.88, 173–200 (1974)

    Google Scholar 

  • Wetzel, M.C., Stuart, D.G.: Ensemble characteristics of cat locomotion and its neural control. Progr. Neurobiol.7, 1–98 (1976)

    Google Scholar 

  • Wilson, D.M.: An approach to the problem of control of rhythmic behavior. In: Invertebrate nervous systems. Their significance for mammalian neurophysiology. Wiersma, C.A.G. (ed.). Chicago: University of Chicago Press 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by: NSF Grant GB-39945 and PHS Grant NS-09322

Supported by: US-France Exchange of Scientists Fellowship FR-016

We are indebted to Drs. W.J. Davis, W.B. Kristan, M. Gola, S. Grillner, H. M. Pinsker and P. S. G. Stein for critical review of the manuscript and valuable discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayers, J.L., Selverston, A.I. Monosynaptic entrainment of an endogenous pacemaker network: A cellular mechanism for von Holst's magnet effect. J. Comp. Physiol. 129, 5–17 (1979). https://doi.org/10.1007/BF00679907

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00679907

Keywords

Navigation