Skip to main content
Log in

Theoretical studies of the benzene oxide—oxepin valence tautomerism

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We have calculated the geometry and energy of the valence tautomers benzene oxide and oxepin using the semiempirical AM1 model and the 6–31G and 6–31G* basis sets utilizing full geometry optimization. In the oxide the folding angleα, the angle between the epoxide ring and the adjacent plane containing four carbon atoms, is about 106°. The carbon skeleton is almost planar, the folding angleβ, the angle between the two four-carbon atom planes being about 175°. In contrast, oxepin is found to have a marked boat-shaped structure with the correspondingα andβ angles about 137° and 159°, respectively. The AM1, 6–31G, and 6–31G* calculations give −11.4, −10.8, and −2.9 kcal mol−1 for the energy change that accompanies the valence tautomerism, oxide-oxepin, compared to an experimental value of about +0.3 kcal mol−1. Single point calculations of the energies at the 6–31 G* geometry using Møller-Plesset perturbation theory to second order (MP2/6–31 G*) and third order (MP3/6–31G*) give ΔE T =+3.3 and +0.8 kcal mol−1. The values for the energy change in the transfer of epoxide oxygen from ethylene oxide to benzene using AM1, 6–31G, and 6–31G* are in good agreement, viz., +31.1, +34.5, and +33.6 kcal mol−1, respectively. A large positive energy change is to be expected in view of the loss of benzene aromaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daly, J. W.; Jerina, D. M.; Witkop, B.Experientia 1972,28, 1129.

    Google Scholar 

  2. Sims, P.; Grover, P. L.Nature (London) 1974,252, 326.

    Google Scholar 

  3. Harvey, R. G.Acc. Chem. Res. 1981,14, 218.

    Google Scholar 

  4. Vogel, E.; Günther, H.Angew. Chem. Int. Ed. Engl. 1967,6, 385.

    Google Scholar 

  5. Goldstein, B. D.; Witz, G.; David, J.; Amoruso, M. A.; Rossmann, T.; Wolder, B. InAdvances in Experimental Medicine and Biology. Biological Reactive Intermediates-II Chemical Mechanisms and Biological Effects; Snyder, R.; Park, D. V.; Kocsis, J. J.; Jollow, D. J.; Gibson, C. G.; Witner, C. M.; Eds.; Plenum Press: New York, 1982, 136A, p. 331.

    Google Scholar 

  6. Davis, S. G.; Whitham, G. H.J Chem. Soc., Perkin Trans 1,1977, 1346.

    Google Scholar 

  7. Hayes, D. M.; Nelson, S. D.; Garland, W. A.; Kollman, P. A.J. Am. Chem. Soc. 1980,102, 1255.

    Google Scholar 

  8. Thieme, R.; Weiss, C.Stud. Biophys. 1983,93, 273.

    Google Scholar 

  9. Cremer, D.; Dick, B.; Christeu, D.J. Mol. Struct. Theochem. 1984,110, 277.

    Google Scholar 

  10. Pople, J. A.; Gordon, M. S.J. Am. Chem. Soc. 1967,89, 4253.

    Google Scholar 

  11. Felker, P.; Hayes, D. M.; Hull, A. H.Theoret. Chim. Acta (Berlin) 1980,55, 293.

    Google Scholar 

  12. Hehre, W. J.; Ditchfield, R.; Pople, J. A.J. Chem. Phys. 1972,56, 2257.

    Google Scholar 

  13. Hariharan, P. C.; Pople, J. A.Theoret. Chim. Acta (Berlin) 1973,28, 213.

    Google Scholar 

  14. Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; DeFrees, D. J.; Seeger, R.; Whiteside, R. A.; Fox, D. J.; Fleuder, E. M.; Pople, J. A. Carnegie-Mellon Quantum Chemistry Publishing Unit: Pittsburgh, PA 15213, 1984.

  15. Møller, C.; Plesset, M. S.Phys Rev. 1934,46, 618

    Google Scholar 

  16. Binkley, J. S.; Pople, J. A.Int. J. Quantum Chem. 1975,9, 229

    Google Scholar 

  17. Pople, J. A.; Binkley, J. S.; Seeger, R.Int. J. Quantum Chem. 1976,10 S, 1.

    Google Scholar 

  18. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.J. Am. Chem. Soc. 1985,107, 3902.

    Google Scholar 

  19. Binkley, J. S.; Frisch, M. J.; DeFrees, D. J.; Raghavachari, K.; Whiteside, R. A.; Schlegel, H. B.; Fleuder, E. M.; Pople, J. A. Carnegie-Mellon University, Pittsburgh, PA 15213, 1982.

  20. George, P.; Bock, C. W.; Stezowski, J. J.; Hildenbrand, T.; Glusker, J. P.J. Phys. Chem. 1988,92, 5656.

    Google Scholar 

  21. George, P.; Bock, C. W.; Glusker, J. P.; Hildenbrand, T.; Stezowski, J. J. Twelfth Austin Symposium on Molecular Structure, University of Texas at Austin, Austin, TX 78721, USA, Supplementary Abstract S10, 1988.

    Google Scholar 

  22. George, P.; Bock, C. W.Tetrahedron 1989,45, 605.

    Google Scholar 

  23. Bock, C. W.; George, P.; Glusker, J. P.; Stezowski, J. J. Twelfth Austin Symposium on Molecular Structure, University of Texas at Austin, Austin, TX 78721, USA, Supplementary Abstract S6.

  24. Huron, M-J.; Claverie, P.J. Phys. Chem. 1972,76, 2123;1974,78, 1853;1974,78, 1862

    Google Scholar 

  25. Claverie, P.; Daudey, J. P.; Langlet, J.; Pullman, B.; Piazzola, D.; Huron, M. J.J. Phys. Chem. 1978,82, 405.

    Google Scholar 

  26. Bock, C. W.; Reddington, R. L.J. Phys. Chem. 1988,92, 1178.

    Google Scholar 

  27. Bingham, R. C.; Dewar, M. J. S.; Lo, D. H.J. Am. Chem. Soc. 1975,97, 1294.

    Google Scholar 

  28. Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A.J. Am. Chem. Soc. 1970,92, 4796.

    Google Scholar 

  29. George, P.; Trachtman, M.; Brett, A. M.; Bock, C. W.Int. J. Quantum Chem. 1977,12, 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, C.W., George, P., Stezowski, J.J. et al. Theoretical studies of the benzene oxide—oxepin valence tautomerism. Struct Chem 1, 33–39 (1990). https://doi.org/10.1007/BF00675782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00675782

Keywords

Navigation