Skip to main content
Log in

Conductance of Cs+ ion in water: Molecular dynamics simulation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The continuum theory of Hubbard-Onsager predicts for the friction coefficients Δζ the following behavior: Δζ>0 and ∂Δζ/∂P<0. In contrast to Hubbard-Onsager theory, experimental observations on Cs+ ion in water show that at low temperatures Δζ<0 and ∂ζ/∂P>0. To explain the observed behavior of Δζ Nakahara et al. proposed the passage through cavities (PTC) mechanism. We performed a molecular dynamics computer simulation to determine if the PTC mechanism is responsible for the observed behavior of Δζ. No passage through cavities was observed. Molecular dynamics computer simulations were performed on Cs+ ion in water at temperature of 268 K and densities of 1.00 and 1.083 g-cm−3. Our results indicate that the observed behavior of Δζ for Cs+ ion is related to the difference in the reorientation times of water molecules in the solvation shell and in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kay, inWater: A Comprehensive Treatise, F. Franks, ed., (Plenum, New York, 1973).

    Google Scholar 

  2. J. Hubbard and L. Onsager,J. Chem. Phys. 67, 4850 (1977); J. Hubbard,ibid. 68, 1649 (1978).

    Google Scholar 

  3. M. Nakahara and K. Ibuki,J. Phys. Chem. 90, 3026 (1986).

    Google Scholar 

  4. M. Takisawa, J. Osugi, and M. Nakahara,J. Phys. Chem. 85, 3582 (1981).

    Google Scholar 

  5. M. Takisawa, J. Osugi, and M. Nakahara,J. Chem. Phys. 85, 2591 (1983).

    Google Scholar 

  6. K. Ibuki and M. Nakahara,J. Chem. Phys. 84, 2776 (1986).

    Google Scholar 

  7. M. Rami Reddy and M. Berkowitz,J. Chem. Phys. 88, 7104 (1988).

    Google Scholar 

  8. T. Tominaga, D. F. Evans, J. B. Hubbard, and P. G. Wolynes,J. Phys. Chem. 83, 2669 (1979).

    Google Scholar 

  9. R. W. Impey, P. A. Madden, and I. R. McDonald,J. Phys. Chem. 87, 5071 (1983).

    Google Scholar 

  10. W. L. Jorgensen, J. W. Madura, R. W. Impey, and M. L. Klein,J. Chem. Phys. 79, 926 (1983).

    Google Scholar 

  11. O. Steinhauser,Mol. Phys. 45, 335 (1982).

    Google Scholar 

  12. L. Verlet,Phys. Rev. 98, 159 (1967); J. P. Rychaert, G. Ciccotti, and H. J. C. Berendsen,J. Comput. Phys. 23, 327 (1977).

    Google Scholar 

  13. M. Berkowitz and W. Wan,J. Chem. Phys. 86, 376 (1987).

    Google Scholar 

  14. M. Rami Reddy and M. Berkowitz,J. Chem. Phys. 87, 6682 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M.R., Berkowitz, M. Conductance of Cs+ ion in water: Molecular dynamics simulation. J Solution Chem 17, 1183–1191 (1988). https://doi.org/10.1007/BF00662927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00662927

Key words

Navigation