Skip to main content
Log in

Nuclear orientation of recoil-implanted52Mn in Au down to 3 mK

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of the γ-ray anisotropy of recoil-implanted52Mn ions in pure Au down to 3 mK indicate marked deviations from free-ion behavior in low applied fields. The effective hyperfine field that explains the anisotropy is found to decrease below 10 mK. Although this behavior could be a signature of a “bound” Kondon state with a lower effective hyperfine coupling constant, it is better explained as arising from a combination of Kondo and relaxation effects. The data indicate that the Mn local moment relaxation timeT 1 is comparable to or larger than the Larmor precession time of the Mn nuclei at 3 mK. Other possible reasons for an attenuated γ-ray anisotropy, such as nuclear quadrupole and second-order crystal field effects, are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Hirschkoff, O. G. Symko, and J. C. Wheatley,J. Low Temp. Phys. 5, 155 (1971).

    Google Scholar 

  2. J. C. Doran and O. G. Symko,Solid State Commun. 14, 719 (1974).

    Google Scholar 

  3. J. C. Doran and O. G. Symko, inProc. 19th Conf. on Magnetism and Magnetic Materials (Boston, 1973), p. 980.

  4. J. P. Compton, I. R. Williams, and G. V. H. Wilson, inHyperfine Structure and Nuclear Radiations, E. Matthias and D. A. Shirley, eds. (1968), p. 793.

  5. E. Lagendijk, L. Niesen, and W. J. Huiskamp,Phys. Lett. 30A, 326 (1969).

    Google Scholar 

  6. S. R. de Groot, H. A. Tolhoek, and W. J. Huiskamp inα-β-γ-Ray Spectroscopy, K. Siegbahn, ed. (North-Holland, Amsterdam, 1965), Vol. 2, p. 1199.

    Google Scholar 

  7. T. Yamazaki,Nuclear Data A 3, 1 (1967).

    Google Scholar 

  8. A. Narath,Physica Scripta 11, 237 (1975).

    Google Scholar 

  9. L. G. Mann, D. C. Camp, J. A. Miskel, and R. J. Nagle,Phys. Rev. 137, B1 (1965); Errata,Phys. Rev. 139, AB2 (1965).

  10. K. S. Krane,Nuclear Instr. Meth. 98, 205 (1972).

    Google Scholar 

  11. P. H. Schmidt,J. El. Chem. Soc. 112, 631 (1965).

    Google Scholar 

  12. J. L. Olsen, inElectron Transport in Metals, R. E. Marshak, ed. (Interscience, 1962).

  13. K. Böhning, private communication.

  14. G. Vogl, private communication.

  15. K. Andres, E. Hagn, E. Smolic, and G. Eska,J. Appl. Phys. 46, 2752 (1975).

    Google Scholar 

  16. R. Walstedt and L. R. Walker,Phys. Rev. B 11, 3280 (1975).

    Google Scholar 

  17. I. N. Greifman, V. G. Grachev, and B. K. Krulikovskii,Sov. Phys.—Solid State 17, 1225 (1975).

    Google Scholar 

  18. T. Butz, private communication.

  19. E. Matthias, W. Schneider, and R. M. Steffen,Ark. Fys. 24, 97 (1963).

    Google Scholar 

  20. W. Götze and P. Schlottmann,J. Low Temp. Phys. 16, 87 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Bundesministerium für Forschung und Technologie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eska, G., Andres, K., Zech, E. et al. Nuclear orientation of recoil-implanted52Mn in Au down to 3 mK. J Low Temp Phys 28, 551–570 (1977). https://doi.org/10.1007/BF00661449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00661449

Keywords

Navigation