Skip to main content
Log in

Neuronal control of locomotion in the lobsterHomarus americanus

III. Dynamic organization of walking leg reflexes

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The dynamic properties of lobster walking leg reflexes were determined by quantitative analysis of the spike trains evoked by passive sinusoidal movements of single leg joints over a broad range of movement frequencies.

  2. 2.

    The evoked reflexes follow movements as rapid as those which occur during normal locomotion (Figs. 3D, 4D, 5D, 6D, 7D, 8D) and thus exhibit the prerequisite property for modulation of locomotory output on a cycle by cycle basis.

  3. 3.

    In most cases, the reflexes evoked by passive joint movement are selectively tuned to the joint movement velocities which characterize normal locomotion as determined by cinematography (Fig. 1, Table 1). Most inappropriate reflexes (i.e., reflexes which have no overt counterpart during locomotion) occur at different joint movement velocities than the normal locomotory movements.

  4. 4.

    The coxo-basal depression movement and both thoraco-coxal joint movements evoke reflexes which are appropriate to serve as amplifiers of ongoing power stroke discharge during forward and backward walking (Fig. 9). Similarly, distributed and positive feedback reflexes resulting from the coxo-basal elevation movement are competent to both activate the appropriate coxal bifunctional muscle (Table 1), and augment ongoing return stroke discharge (Fig. 9).

  5. 5.

    Most power stroke reflexes in bifunctional muscles are selectively tuned to low movement velocities (Table 1). It is suggested that this property makes them appropriate to function in load compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers, J.L., Davis, W.J.: Neuronal control of locomotion in the lobster. I. Motor programs for forward and backward walking. J. comp. Physiol.115, 1–27 (1977a)

    Google Scholar 

  • Ayers, J.L., Davis, W.J.: Neuronal control of locomotion in the lobster. II. Types of walking leg reflexes. J. comp. Physiol.115, 29–46 (1977b)

    Google Scholar 

  • Ayers, J.L., Selverston, A.I.: Synaptic control of an endogenous pacemaker network. J. Physiol. (Paris)73, 453–461 (1977)

    Google Scholar 

  • Barnes, W.J.P., Spirito, C.P., Evoy, W.H.: Nervous control of walking in the crabCardisoma guanhumi. II. Role of reflexes in walking. Z. vergl. Physiol.76, 16–31 (1971)

    Google Scholar 

  • Bush, B.M.H.: Leg reflexes from chordotonal organs in the crab,Carcinus maenas. Comp. Biochem. Physiol.15, 567–587 (1965)

    Google Scholar 

  • Bush, B.M.H., Clarac, F.: Intersegmental reflex excitation of leg muscles and myochordotonal efferents in decapod Crustacea. J. Physiol.103, 58–60 (1975)

    Google Scholar 

  • Davis, W.J.: Reflex organization in the swimmeret system of the lobster. I. Intrasegmental reflexes. J. exp. Biol.51, 547–563 (1969a)

    Google Scholar 

  • Davis, W.J.: Reflex organization in the swimmeret system of the lobster. II. Reflex dynamics. J. exp. Biol.51, 565–573 (1969b)

    Google Scholar 

  • Davis, W.J., Kennedy, D.: Command neurones controlling swimmeret movements in the lobster. III. Temporal relationships among bursts in different motoneurones. J. Neurophysiol.35, 20–29 (1972)

    Google Scholar 

  • Delcomyn, F., Davis, W.J.: 360 Biological analytical program. Share contribution no. 360d-17.5001. IBM Corporation contributed program library. Hawthorne, New York: IBM 1968

    Google Scholar 

  • Evoy, W.J., Fourtner, C.R.: Nervous control of walking in the crabCardisoma guanhumi. III. Proprioceptive influences on intra and intersegmental coordination. J. comp. Physiol.83, 303–318 (1973)

    Google Scholar 

  • Kennedy, D., Calabrese, R.L., Wine, J.J.: Presynaptic inhibition: primary afferent depolarization in crayfish neurones. Science186, 451–454 (1974)

    Google Scholar 

  • Kennedy, D., Davis, W.J.: The organization of invertebrate nervous systems. In: Handbook of physiology, Section I, Vol. I, part 2 (ed. E.R. Kandel), pp. 1023–1087. Bethesda: Amer. Physiol. Soc. (1977)

    Google Scholar 

  • Lindsley, B.G., Gerstein, G.: Reflex control of a crayfish claw motor neuron during imposed dactylopodite movements. Brain Res.130, 348–353 (1977)

    Google Scholar 

  • Mill, P.J., Lowe, D.A.: An analysis of the types of sensory units present in the PD proprioceptor of decapod crustacea. J. exp. Biol.56, 509–525 (1972)

    Google Scholar 

  • Pearson, K.G., Duysens, J.: Function of segmental reflexes in the control of stepping in cockroaches and cats. In: Neural control of locomotion (eds. R.M. Herman, S. Grillner, P.S.G. Stein, D.G. Stuart). New York: Plenum Press 1976

    Google Scholar 

  • Perret, C., Cabelguen, J.M.: A new classification of flexor and extensor muscles revealed by study of the central locomotor program in the cat. Exp. Brain Res. (Suppl.)23, 160 (1975)

    Google Scholar 

  • Selverston, A.I., King, D.G., Russel, D.F., Miller, J.P.: The stomatogastric nervous system: structure and function of a small neural network. Progr. Neurobiol.7, 215–290 (1976)

    Google Scholar 

  • Spirito, C.P., Evoy, W.H., Barnes, W.J.P.: Nervous control of walking in the crab,Cardisoma guanhumi I. Characteristics of resistance reflexes. Z. vergl. Physiol.76, 1–15 (1972)

    Google Scholar 

  • Spirito, C.P., Evoy, W.H., Fourtner, C.R.: Consideration of proprioception and neuromuscular integration in crustacean locomotion. Amer. Zool.13, 427–434 (1973)

    Google Scholar 

  • Weins, T.J., Gerstein, G.L.: Reflex pathways of the crayfish claw. J. comp. Physiol.107, 309–326 (1976)

    Google Scholar 

  • Wiersma, C.A.G.: Movement receptors in decapod crustacea. J. Mar. Biol. Ass. U.K.38, 143–152 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH Research Grant NS 09050

We thank F. Clarac, D. Kennedy and A.I. Selverston for comments on previous drafts of this manuscript. Computer facilities were generously provided in part by the UCSD Special Computer Resource for Biomolecular Research (NIH Grant DRR 00757).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayers, J.L., Davis, W.J. Neuronal control of locomotion in the lobsterHomarus americanus . J. Comp. Physiol. 123, 289–298 (1978). https://doi.org/10.1007/BF00656962

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656962

Keywords

Navigation