Skip to main content
Log in

Tensile strength and visible ultrasonic cavitation of superfluid4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Motion picture photographs of cavitation in He II revealed new characteristics pertinent to the liquid's tensile strength and bubble dynamics. A cylindrical acoustic standing wave with a frequency of 50.58 kHz induced the cavitation in He II at a temperature of 2.09 K. Analysis of light diffracted by the sound gave measurements of the acoustic pressure amplitude which were used both for selecting the best drive frequency and for obtaining the tensile strength. Bubbles appeared to originate on pressure antinodes, expanded to a diameter of 0.5–1.0 mm in about 0.3 msec, and eventually fragmented into smaller bubbles. They originated where the negative pressure extremum was as small as −0.6 bar (+0, −50%), a tensile strength much smaller than the predictions of theories developed for the homogeneous nucleation of bubbles in classical liquids. The bubble fragments were frequently nonspherical and had widths of 0.1–0.2 mm. Small bubbles also displayed an unexpected preference to originate on the surface of a stainless steel tube inserted in the sound field. Subsequent to nucleation, bubbles were frequently attracted to acoustic pressure nodes in agreement with a theory of vibrations and forces originally developed for bubbles in normal liquids. Attempts to detect first and second sound radiated by cavitation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Beams,Phys. Rev. 104, 880 (1956).

    Google Scholar 

  2. J. W. Beams,Phys. Fluids 2, 1 (1959).

    Google Scholar 

  3. C. F. Mate and K. L. McCloud, inProc. 11th Int. Conf. Low Temp. Phys., J.F. Allen, ed. (U. of St. Andrews Press, 1968), pp. 308, 317.

  4. M. F. Wilson, D. O. Edwards, and J. J. Tough,Bull. Am. Phys. Soc. 12, 96 (1967).

    Google Scholar 

  5. R. D. Finch, R. Kagiwada, M. Barmatz, and I. Rudnick,Phys. Rev. 134, A1425 (1964).

    Google Scholar 

  6. P. D. Jarman and K. J. Taylor,J. Low Temp. Phys. 2, 389 (1970).

    Google Scholar 

  7. E. A. Neppiras and R. D. Finch,J. Acoust. Soc. Am. 52, 335 (1972).

    Google Scholar 

  8. R. D. Finch and T. G. J. Wang,J. Acoust. Soc. Am. 39, 511 (1966).

    Google Scholar 

  9. M. Volmer,Kinetic der Phasenbildung (Steinkopff, Dresden-Leipzig, 1939), p. 161; transl.Kinetics of Phase Formation, ATI No. 81935 (F-TS-7068-RE) (Clearinghouse Fed. Sci. Tech. Inform., Springfield, Virginia).

    Google Scholar 

  10. J. P. Hirth and G. M. Pound, inCondensation and Evaporation, Nucleation and Growth Kinetics (Prog. Mater. Sci., Vol. 11), B. Chalmers, ed. (Pergamon, New York, 1963), p. 158.

    Google Scholar 

  11. J. C. Fisher,J. Appl. Phys. 19, 1062 (1948); D. Turnbull and J. C. Fisher,J. Chem. Phys. 17, 71 (1949).

    Google Scholar 

  12. R. Apfel, Acoust. Res. Lab., Harvard Univ. Tech. Memo. No. 62 (February 1970).

  13. R. E. Apfel,J. Acoust. Soc. Am. 49, 145 (1971).

    Google Scholar 

  14. R. E. Apfel,Sci. Am. 227 (6), 58 (1972);Nature (Phys. Sci.)233, 119 (1971).

    Google Scholar 

  15. R. Cole,Adv. Heat Transfer 10, 85 (1974).

    Google Scholar 

  16. R. E. Apfel,J. Acoust. Soc. Am. 48, 1179 (1970).

    Google Scholar 

  17. R. J. Good and G. V. Ferry, inAdvances in Cryogenic Engineering (Plenum Press, New York, 1963), Vol. 8, p. 306.

    Google Scholar 

  18. V. A. Akulichev and Yu. Ya. Boguslavskii,Soviet Phys.—JETP 35, 1012 (1972).

    Google Scholar 

  19. F. Seitz,Phys. Fluids 1, 2 (1958).

    Google Scholar 

  20. J. R. Shadley, Ph.D. Dissertation, University of Houston (1970), unpublished.

  21. W. M. Fairbank, J. Leitner, M. M. Block, and E. M. Harth,Problems of Low Temperature Physics and Thermodynamics (Pergamon Press, New York, 1958), Vol. 1, pp. 45–54.

    Google Scholar 

  22. R. D. Finch and M. L. Chu, Jr.,Phys. Rev. 161, 202 (1967).

    Google Scholar 

  23. P. M. McConnell, M. L. Chu, Jr., and R. D. Finch,Phys. Rev. A 1, 411 (1970).

    Google Scholar 

  24. J. R. Shadley and R. D. Finch,Phys. Rev. A 3, 780 (1971).

    Google Scholar 

  25. R. D. Finch and E. A. Neppiras, inUltrasonics International 1973 Conf. Proc., L. J. I. Browne, ed. (IPC Press, Surrey, 1973), p. 73.

    Google Scholar 

  26. A. Mosse, M. L. Chu, Jr., and R. D. Finch,J. Acoust. Soc. Am. 47, 1258 (1970).

    Google Scholar 

  27. W. L. Nyborg and D. E. Hughes,J. Acoust. Soc. Am. 42, 891 (1967).

    Google Scholar 

  28. R. C. A. Brown, H. J. Hilke, and A. H. Rogers,Nature 220, 1177 (1968).

    Google Scholar 

  29. D. Y. Hsieh, Rectified Internal Convection and Ultrasonic Cavitation in Helium II, Rept. No. 85-33, Div. of Eng. and App. Sci. Calif. Inst. of Tech. (1966).

  30. J. W. Goodman,Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 126.

    Google Scholar 

  31. M. Greenspan and C. Tschiegg,J. Res. Nat. Bur. Std. C71, 299 (1967).

    Google Scholar 

  32. C. E. Chase,Phys. Fluids 1, 193 (1958).

    Google Scholar 

  33. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965), p. 407.

    Google Scholar 

  34. P. L. Marston, D. B. Greene, and W. M. Fairbank, paper presented at the Annapolis Conf. on Cavitation (1973), unpublished.

  35. A. I. Eller,J. Acoust. Soc. Am. 43, 170 (1968).

    Google Scholar 

  36. F. G. Blake, Jr.,J. Acoust. Soc. Am. 21, 551 (1949).

    Google Scholar 

  37. M. S. Plesset, inCavitation in Real Fluids, R. Davis, ed. (American Elsevier, New York, 1964), p. 11.

    Google Scholar 

  38. M. Minnaert,Phil. Mag. 26, 235 (1933).

    Google Scholar 

  39. H. C. Dhingra and R. D. Finch,J. Acoust. Soc. Am. 59, 19 (1976).

    Google Scholar 

  40. L. Bernath,Ind. Eng. Chem. 44, 1310 (1948).

    Google Scholar 

  41. K. R. Atkins and Y. Narahara,Phys. Rev. 138, A437 (1965).

    Google Scholar 

  42. J. Hord, R. B. Jacobs, C. C. Robinson, and L. L. Sparks,Trans. ASME A86, 485 (1964).

    Google Scholar 

  43. K. Nishioka and G. M. Pound,Surface Colloid Sci. 8, 297 (1976); J. Lothe and G. M. Pound,J. Chem. Phys. 36, 2080 (1962).

    Google Scholar 

  44. R. D. Finch,Phys. Fluids 12, 1775 (1969).

    Google Scholar 

  45. E. P. Gross and H. Tung-Li,Phys. Rev. 170, 190 (1968).

    Google Scholar 

  46. F. London,Superfluids (Dover, New York, 1954), Vol. II, p. 155.

    Google Scholar 

  47. R. D. Finch and E. A. Neppiras,J. Acoust. Soc. Am. 53, 1402 (1973).

    Google Scholar 

  48. T. Vroulis, E. A. Neppiras, and R. D. Finch,J. Acoust. Soc. Am. 59, 255 (1976).

    Google Scholar 

  49. J. Kolb and A. P. Loeber,J. Acoust. Soc. Am. 26, 249 (1954).

    Google Scholar 

  50. M. H. Edwards,Can. J. Phys. 34, 898 (1956).

    Google Scholar 

  51. C. V. Raman and K. S. Venkataraman,Proc. R. Soc. Lond. 171, 137 (1939).

    Google Scholar 

  52. M. Born and E. Wolf,Principles of Optics, 4th ed. (Pergamon Press, New York, 1970), p. 124.

    Google Scholar 

  53. R. Bracewell,The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), pp. 243, 248, 287.

    Google Scholar 

  54. B. D. Cook and E. A. Hiedemann,J. Acoust. Soc. Am. 33, 945 (1961).

    Google Scholar 

  55. R. Bracewell, private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the National Science Foundation Grant DMR75-15628.

NSF Predoctoral Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marston, P.L. Tensile strength and visible ultrasonic cavitation of superfluid4He. J Low Temp Phys 25, 383–407 (1976). https://doi.org/10.1007/BF00655838

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655838

Keywords

Navigation