Skip to main content
Log in

Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean-acid-metabolism plants

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The studies described in the paper were conducted with tissue slices of Crassulacean acid metabolism (CAM) plants floating in isotonic buffer. In a first series of experiments, temperature effects on the efflux of [14C]malate and14CO2 were studied. An increase of temperature increased the efflux from the tissue in a non-linear manner. The efflux was markedly influenced also by the temperatures applied during the pretreatment. The rates of label export in response to the temperature and the relative contributions of14CO2 and [14C]malate to the label export were different in the two studied CAM plants (Kalanchoë daigremontiana, Sempervivum montanum). In further experiments, temperature response of the labelling patterns produced by14CO2 fixation and light and darkness were studied. In tissue which had accumulated malate (acidified state) an increase of temperature decreased the rates of dark CO2 fixation whilst the rates of CO2 fixation in light remained largely unaffected. An increase of temperature shifted the labelling patterns from a C4-type (malate being the mainly labelled compound) into a C3-type (label in carbohydrates). No such shift in the labelling patterns could be observed in the tissue which had depleted the previously stored malate (deacidified state). The results indicate that in the acidified tissue the increase of temperature increases the efflux of malate from the vacuole by changing the properties of the tonoplast. It is assumed that the increased export of malic acid lowers the in-vivo activity of phosphoenol pyruvate carboxylase by feedback inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAM:

Crassulacean acid metabolism

FW:

fresh weight

PEPCase:

phosphoenolpyruvate carboxylase

References

  • Böcher, M., Kluge, M. (1978) Der C4-Weg der O2-Fixierung beiSpinacea oleracea. II. Pulse-chase Experimente mit suspendierten Blattstreifen. Z. Pflanzenphysiol.86, 405–421

    Google Scholar 

  • Buchanan-Bollig, I.C., Kluge, M. (1981) Crassulacean Acid Metabolism (CAM) inKalanchoë daigremontiana: temperature response of phosphoenolpyruvate-(PEP)-carboxylase in relation to allosteric effectors. Planta152, 181–188

    Google Scholar 

  • Cockburn, W., McAulay, A. (1975) The pathway of carbon dioxide fixation in Crassulacean plants. Plant Physiol.55, 87–89

    Google Scholar 

  • Fischer, A., Kluge, M. (1985) Light period of Crassulacean acid metabolism: Control of carbon transfer from malic acid to carbohydrates by CO2 concentration. Physiol. Plant.63, 327–331

    Google Scholar 

  • Friemert, V., Kluge, M., Smith, J.A. (1986) Net CO2 output by CAM plants in the light: the role of leaf conductance. Physiol. Plant.68, 353–358

    Google Scholar 

  • Hohorst, M. (1970)l-(—)-Malat: Bestimmung mit Malatdehydrogenase und NAD}. In: Methoden der enzymatischen Analyse, Band II, pp. 1544–1548, Bergmeyer, H.U., ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Kaplan, A., Gale, J., Poljakoff-Mayber, A. (1976) Resolution of net dark fixation of carbon dioxide into its respiration and gross fixation components inBryophyllum daigremontianum. J. Exp. Bot.27, 220–230

    Google Scholar 

  • Kluge, M., 1968) Untersuchungen über den Gaswechsel vonBryophyllum während der Lichtperiode: II. Beziehungen zwischen dem Malatgehalt des Gewebes und der CO2-Aufnahme. Planta80, 359–377

    Google Scholar 

  • Kluge, M., Böcher, M., Jungnickel, G. (1980) Metabolic control of crassulacean acid metabolism: evidence for diurnal changing sensitivity against inhibition by malate of PEP-carboxylation inKalamchoë tubiflora Hamet. Z. Pflanzenphysiol.97, 197–204

    Google Scholar 

  • Kluge, M., Fischer, K. (1967) Über Zusammenhänge zwischen CO2-Austausch und der Abgabe von Wasserdampf durchBryophyllum daigremontianum Berg. Planta77, 112–123

    Google Scholar 

  • Kluge, M., Heininger, B. (1973) Untersuchungen über den Efflux von Malat aus den Vakuolen der assimilierenden Zellen vonBryophyllum und mögliche Einflüsse dieses Vorganges auf den CAM. Planta113, 333–343

    Google Scholar 

  • Kluge, M., Kriebitsch, H., von Willert, D.J. (1974) Dark fixation of CO2 in Crassulacean acid metabolism: are two carboxylation steps involved? Z. Pflanzenphysiol.72, 460–465

    Google Scholar 

  • Kluge, M., Lange, O.L., von Eichmann, M., Schmid, R. (1973) Diurnaler Säurerhythmus beiTillandsia usneoides: Untersuchungen über den Weg des Kohlenstoffs sowie die Abhängigkeit des CO2-Gaswechsels von der Lichtintensität, Temperatur und Wassergehalt der Pflanze. Planta112, 357–372

    Google Scholar 

  • Kluge, M., Osmond, B. (1972) Studies on PEP-carboxylase and other enzymes involved in crassulacean acid metabolism ofBryophyllum tubiflorum andSedum praealtum. Z. Pflanzenphysiol.66, 97–105

    Google Scholar 

  • Kluge, M., Ting, I.P. (1978) Crassulacean acid metabolism: analysis of an ecologial adaptation. Ecol. Stud. vol.30

  • Lange, O.L., Medina, E. (1979) Stomata of the CAM plantTillandsia recurvata respond directly to humidity. Oecologia40, 357–363

    Google Scholar 

  • Lüttge, U., Ball, E. (1974a) Proton and malate fluxes in cells ofBryophyllum daigremontianum leaf slices in relation to potential osmotic pressure of the medium. Z. Pflanzenphysiol.73, 326–338

    Google Scholar 

  • Lüttge, U., Ball, E. (1974b) Mineral ion fluxes in slices of acidified and deacidified leaves of the CAM plantBryophyllum daigremontianum. Z. Pflanzenphysiol.73, 339–348

    Google Scholar 

  • Lüttge, U., Ball, E. (1977) Concentration and pH dependence of malate efflux and influx in leaf slices of CAM plants. Z. Pflanzenphysiol.83, 43–54

    Google Scholar 

  • Lüttge, U., Ball, E., Tromballa, H.-W. (1975) Potassium independence of osmoregulated oscillations of malate-levels in the cells of CAM-leaves. Biochem. Physiol. Pflanz.167, 267–283

    Google Scholar 

  • Lüttge, U., Smith, J.A.C. (1984) Mechanisms of passive malic acid efflux from vacuoles of the CAM plantKalanchoë daigremontiana. J. Membr. Biol.81, 149–158

    Google Scholar 

  • Medina, E. (1982) Temperature and humudity effects on dark CO2 fixation byKalanchoë pinnata. Z. Pflanzenphysiol.107, 251–258

    Google Scholar 

  • Medina, E., Osmond, C.B. (1981) Temperature dependence of dark CO2 fixation and acid accumulation inKalanchoë daigremontiana. Aust. J. Plant Physiol.8, 641–649

    Google Scholar 

  • Meyer, C.P. (1979) The regulation of gas exchange inKalanchoë daigremontiana Hamet et Pier. Thesis, University of Melbourne, Australia

    Google Scholar 

  • Neales, T.F. (1973a) Effect of night temperature on the assimilation of carbon dioxide by mature pineapple plantsAnanas comosus (L.) Merr. Aust. J. Biol. Sci.26, 539–546

    Google Scholar 

  • Osmond, C.B. (1978) Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol.29, 379–414

    Google Scholar 

  • Osmond, C.B., Allaway, W.G. (1974) Pathways of CO2 fixation in the CAM plantKalanchoë daigremontiana. I. Patterns of14CO2 fixation in light. Aust. J. Plant Physiol.1, 503–511

    Google Scholar 

  • Osmond, C.B., Ludlow, M.M., Davies, R., Cowan, I.R., Powles, S.B., Winter, K. (1979) Stomatal responses to humidity inOpuntia inermis in regulation of CO2 and H2O exchange patterns. Oecologia41, 65–76

    Google Scholar 

  • Queiroz, O. (1965) Sur le métabolisme acide des Crassulacées. I. Action à long terme de la température de nuit sur la synthèse d'acide malique parKalanchoë blossfeldiana “Tom Thumb” placée en jours courts. Physiol. Vég.3, 203–213

    Google Scholar 

  • Queiroz, O. (1967) Recherche d'un modèle enzymatique pour le déterminisme de la désacidification diurne chez les Crassulacées. C.R. Acad. Sci. Sér. D265, 1928–1931

    Google Scholar 

  • Ritz, D., Kluge, M., Veith, H.J. (1987) Effect of temperature and CO2 concentration on malate accumulation during CAM: evidence by13C-mass spectrometry. Plant Physiol. Biochem.25, 391–399

    Google Scholar 

  • Sutton, B.G., Osmond, C.B. (1972) Dark fixation of CO2 by Crassulacean plants. Evidence for a single carboxylation step. Plant Physiol.50, 360–365

    Google Scholar 

  • Taborsky, H., Müller, D., Kluge, M. (1983) Localization of phosphoenolpyruvate carboxylase in the cytoplasm of Crassulacean acid metabolism plant cells by means of a rapid immunohistochemical method. Physiol. Vég.21, 1063–1068

    Google Scholar 

  • Ting, I.P. (1985) Crassulacean acid metabolism. Annu. Rev. Plant Physiol.36, 595–622

    Google Scholar 

  • von Willert, D., Brinckmann, E., Beller, D.M., Scheitler, B. (1983) CO2 exchange of CAM inhibiting succulents in the Southern Namib desert in relation to microclimate and water stress. Photosynth. Res.4, 289–298

    Google Scholar 

  • Wagner, J., Larcher, W. (1981) Dependence of CO2 gas exchange and acid metabolism of the alpine CAM plantSempervivum montanum on temperature and light. Oecologia50, 88–93

    Google Scholar 

  • Wilkins, M.B. (1983) The diurnal rhythm of carbon-dioxide metabolism inBryophyllum: the mechanism of phase-shift induction by thermal stimuli. Planta157, 471–480

    Google Scholar 

  • Winter, K. (1980) Day/night changes in the sensitivity of phosphoenolpyruvate carboxylase to malate during Crassulacean acid metabolism. Plant Physiol.65, 792–796

    Google Scholar 

  • Winter, K. (1981) Changes in properties of phosphoenolpyruvate carboxylase from the CAM plantMesembryanthemum crystallinum after isolation. Aust. J. Plant Physiol.8, 115–119

    Google Scholar 

  • Winter, K. (1985) Crassulacean acid metabolism. In: Photosynthetic mechanism and the environment, pp. 330–387, Barber, J., Baker, N.R., eds. Elsevier, Amsterdam

    Google Scholar 

  • Winter, K., Tenhunen, J.D. (1982) Light-stimulation burst of carbon dioxide uptake following nocturnal acidification in the Crassulacean acid metabolism plantKalanchoë daigremontiana. Plant Physiol.70, 1718–1722

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor O.L. Lange, Würzburg, on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friemert, V., Heininger, D., Kluge, M. et al. Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean-acid-metabolism plants. Planta 174, 453–461 (1988). https://doi.org/10.1007/BF00634473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00634473

Key words

Navigation