Skip to main content
Log in

Microwave power-induced flux penetration and loss in high-temperature superconductors

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Extensive studies have been performed in a number of laboratories of the microwave properties of granular and partially granular superconductors at elevated levels of microwave power. The power-induced surface impedance initially increases at a rate that is quadratic in the microwave field. At intermediate power levels the surface resistance increases linearly with the microwave field, finally saturating in microwave fields between 10 and 100 Oe. The induced surface resistance is generally found to increase at low power with the square of the frequency and at high power directly with the frequency. A transmission-line analysis of the penetration of intergranular microwave vortices, pinned by defects, leads to results in qualitative agreement with these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Delayen, K. C. Goretta, R. B. Poeppel, and K. W. Shepard,Appl. Phys. Lett. 52, 930 (1988).

    Google Scholar 

  2. J. R. Delayen and C. L. Bohn,Phys. Rev. B 40, 5151 (1989).

    Google Scholar 

  3. M. Bielski, O. G. Vendik, M. M. Gaidukov, E. K. Gol'man, S. F. Karmanenko, A. B. Kozyrev, S. G. Kolesov, and T. B. Samoilova,JETP Lett. 46, S145 (1987).

    Google Scholar 

  4. A. M. Portis, D. W. Cooke, and E. R. Gray,J. Supercond. 3, 297 (1990).

    Google Scholar 

  5. J. Halbritter,J. Appl Phys. 68, 6315 (1990).

    Google Scholar 

  6. S. M. Rezende and F. M. de Aguiar,Phys. Rev. B 39, 9715 (1989).

    Google Scholar 

  7. M. A. Macêdo, F. L. A. Macado, and S. M. Rezende inProceedings of the International Conference on Transport Properties of Superconductors, Rio de Janeiro, Spring 1990, ed. R. Nicolsky (World Scientific, Singapore, 1990).

    Google Scholar 

  8. J. R. Delayen, C. L. Bohn, and C. T. Roche,Rev. Sci. Instrum. 61, 2207 (1990).

    Google Scholar 

  9. J. R. Delayen, C. L. Bohn, and C. T. Roche,J. Supercond. 3, 243 (1990).

    Google Scholar 

  10. R. Janes, R. S. Liu, P. P. Edwards, and J. L. Tallon,Physica C 167, 520 (1990).

    Google Scholar 

  11. Y. Kobayashi, T. Imai, and H. Kayano,IEEE Trans. Microwave Theory Tech. 39, 1530 (1991).

    Google Scholar 

  12. D. W. Cooke, P. N. Arendt, E. R. Gray, A. Meyer, D. R. Brown, N. E. Elliott, G. A. Reeves, and A. M. Portis,IEEE Trans. Magn. 27, 880 (1991).

    Google Scholar 

  13. D. W. Cooke, P. N. Arendt, E. R. Gray, and A. M. Portis,IEEE Trans. Microwave Theory Tech. 39, 1539 (1991).

    Google Scholar 

  14. J. R. Delayen and C. L. Bohn,Phys. Rev. B 40, 5151 (1989).

    Google Scholar 

  15. M. Hein, G. Müller, H. Piel, and L. Ponto,J. Appl. Phys. 66, 5940 (1989).

    Google Scholar 

  16. M. Hein, S. Kraut, E. Mahner, G. Müller, D. Opie, H. Piel, L. Ponto, D. Wehler, M. Becks, U. Klein, and M. Peiniger,J. Supercond. 3, 323 (1990).

    Google Scholar 

  17. M. Hein, Dissertation, University of Wuppertal, 1992, unpublished.

  18. M. Hein, S. Hensen, G. Müller, S. Orbach, H. Piel, M. Strupp, N. G. Chew, J. A. Edwards, S. W. Goodyear, J. S. Satchel, and R. G. Humphreys, inHigh T c Superconducting Thin Films, ed. L. Carrera (North-Holland, Amsterdam, 1992) pp. 95–100.

    Google Scholar 

  19. M. Hein, H. Piel, M. Strupp, M. R. Trunin, and A. M. Portis,International Conference on Magnetism, Edinburgh, 2–6 September 1991.J. Magn. Magn. Mater. 104–107, 529 (1992).

    Google Scholar 

  20. A. M. Portis, D. W. Cooke, E. R. Gray, P. N. Arendt, C. L. Bohn, J. R. Delayen, C. T. Roche, M. Hein, N. Klein, G. Müller, S. Orbach, and H. Piel,Appl. Phys. Lett. 58, 307 (1991).

    Google Scholar 

  21. T. W. Button, N. McN. Alford, F. Wellhofer, T. C. Shields, J. S. Abell, and M. Day,IEEE Trans. Magn. 27, 1434 (1991).

    Google Scholar 

  22. P. A. Smith, L. E. Davis, N. McN. Alford, and T. W. Button,Electron. Lett. 26, 1476 (1990).

    Google Scholar 

  23. N. McN. Alford, T. W. Button, M. J. Adams, S. Hedges, B. Nicholson, and W. A. Phillips,Nature (London) 349, 680 (1991).

    Google Scholar 

  24. N. McN. Alford, T. W. Button, and D. Opie,Supercond. Sci. Technol. 4, 433 (1991).

    Google Scholar 

  25. B. Bonin and H. Safa,Supercond. Sci. Technol. 4, 257 (1991).

    Google Scholar 

  26. Groupe d'Etudes Cavités Supraconductrices (GEC Saclay), unpublished.

  27. R. T. Kampwirth and K. E. Gray,IEEE Trans. Magn. 17, 565 (1981).

    Google Scholar 

  28. P. Bosland, F. Guemas, and M. Juillard,ICMAS 90, Grenoble, 17–19 October 1990. Proceedings edited by A. Niku-Lari.

  29. R. G. Humphreys, J. S. Satchell, N. G. Chew, J. A. Edwards, S. W. Goodyear, S. E. Blenkinsop, O. D. Dosser, and A. G. Cullis,Supercond. Sci. Technol. 3, 38 (1990).

    Google Scholar 

  30. N. G. Chew, S. W. Goodyear, J. A. Edwards, J. S. Satchell, S. E. Blenkinsop, and R. G. Humphreys,Appl. Phys. Lett. 57, 2016 (1990).

    Google Scholar 

  31. N. S. Shiren, R. B. Laibowitz, T. G. Kazyaka, and R. H. Koch,Phys. Rev. B 43, 10478 (1991).

    Google Scholar 

  32. R. C. Taber,Rev. Sci. Instrum. 61, 2200 (1990).

    Google Scholar 

  33. J. C. Gallop, A. M. Portis, W. J. Radcliffe, and C. D. Langham, CMMP-91, Condensed Matter and Materials Physics Conference, Birmingham, 17–19 December 1991.

  34. D. E. Oates, A. C. Anderson, D. M. Sheen, and S. M. Ali,IEEE Trans. Microwave Theory Tech. 39, 1522 (1991).

    Google Scholar 

  35. D. M. Sheen, S. M. Ali, D. E. Oates, R. S. Withers, and J. A. Kong,IEEE Trans. Appl. Supercond. 1, 108 (1991).

    Google Scholar 

  36. C. Wilker, Z.-Y. Shen, P. Pang, D. W. Face, W. L. Holstein, A. L. Matthews, and D. B. Laubacher,IEEE Trans. Microwave Theory Tech. 39, 1462 (1991).

    Google Scholar 

  37. A. B. Kozyrev, T. B. Samoilova, O. I. Soldatenkov, and O. G. Vendik,Solid State Commun. 77, 441 (1991).

    Google Scholar 

  38. M. R. Namordi, A. Mogro-Campero, L. G. Turner, and D. W. Hogue,IEEE Trans. Microwave Theory Tech. 39, 1468 (1991).

    Google Scholar 

  39. A. Porch, M. J. Lancaster, H. C. H. Cheung, A. M. Portis, R. G. Humphreys, and N. G. Chew, CMMP-91, Condensed Matter and Materials Physics Conference, Birmingham, 17–19 November 1991.

  40. C. M. Chorey, K.-S. Kong, K. B. Bhasin, J. D. Warner, and T. Itoh,IEEE Trans. Microwave Theory Tech. 39, 1480 (1991).

    Google Scholar 

  41. M. Daginnus, J. Richter, and J. H. Hinken,Supercond. Sci. Technol. 4, 482 (1991).

    Google Scholar 

  42. S. T. Ruggiero, A. Cardona, and H. R. Fetterman,IEEE Trans. Magn. 27, 3070 (1991).

    Google Scholar 

  43. J. P. Hong, T. W. Kim, H. R. Fetterman, A. H. Cardona, and L. C. Bourne,Appl. Phys. Lett. 59, 991 (1991).

    Google Scholar 

  44. M. M. Gaidukov, S. G. Kolesov, L. Kowalewicz, A. B. Kozyrev, and O. G. Vendik,Electron. Lett. 26, 1229 (1990).

    Google Scholar 

  45. O. G. Vendik, M. M. Gaidukov, A. Karpyuk, A. B. Kozyrev, S. G. Kolesov, and S. B. Rozanov,Sov. Tech. Phys. Lett. 16, 514 (1990).

    Google Scholar 

  46. S. J. Hedges, M. J. Adams, B. F. Nicholson, and N. G. Chew,Electron. Lett. 26, 977 (1990).

    Google Scholar 

  47. H. Chaloupka,Soviet-German Seminar, St. Petersburg, 6–13 October 1991. Proceedings to be published.

  48. H. Chaloupka, N. Klein, M. Peiniger, H. Piel, A. Pischke, and G. Splitt,IEEE Trans. Microwave Theory Tech. 39, 1513 (1991).

    Google Scholar 

  49. A. M. Portis, H. Chaloupka, M. Jeck, H. Piel, and A. Pischke,Supercond. Sci. Technol. 4, 436 (1991).

    Google Scholar 

  50. C. C. Chin, D. E. Oates, G. Dresselhaus, and M. S. Dresselhaus,Phys. Rev. B 45, 4788 (1992).

    Google Scholar 

  51. T. Van Duzer and C. W. Turner,Principles of Superconductive Devices and Circuits (Elsevier/North-Holland, New York, 1981).

    Google Scholar 

  52. J. R. Clem,Physica C 153–155, 50 (1988).

    Google Scholar 

  53. M. Tinkham and C. J. Lobb, “Physical properties of the new superconductors,”Solid State Physics, Vol. 42, eds. H. Ehrenreich and D. Turnbull (Academic Press, San Diego, 1989).

    Google Scholar 

  54. A. M. Campbell and J. E. Evetts, “Critical currents in superconductors,”Adv. Phys. 21, 199 (1972). Reprinted by Taylor and Francis, Ltd., London, 1972. Sec. 8.2.1.

    Google Scholar 

  55. A. M. Portis, K. W. Blazey, and F. Waldner,Physica C 153–155, 308 (1988).

    Google Scholar 

  56. M. Warden, M. Stalder, G. Stefanicki, A. M. Portis, and F. Waldner,J. Appl. Phys. 64, 5800 (1988).

    Google Scholar 

  57. A. M. Portis and D. W. Cooke,Supercond. Sci. Technol. 5, S395 (1992).

    Google Scholar 

  58. T. Van Duzer and C. W. Turner,Principles of Superconductive Devices and Circuits (Elsevier/North-Holland, New York, 1981), Sec. 5.11.

    Google Scholar 

  59. C. P. Bean,Phys. Rev. Lett. 8, 250 (1962);Rev. Mod. Phys. 36, 31 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portis, A.M. Microwave power-induced flux penetration and loss in high-temperature superconductors. J Supercond 5, 319–330 (1992). https://doi.org/10.1007/BF00618131

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618131

Key words

Navigation