Skip to main content
Log in

Matched transfer characteristics of single units in a compound slit sense organ

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The transfer characteristics of the lyriform slit sense organ HS8 on the leg tibia ofCupiennius salei Keys. (Fig. 1) were investigated by electrophysiological experiments. The organ is made up of 7 slits. It was stimulated by deflecting the metatarsus toward the fixed tibia. The responses of the constituent slits were recorded individually.

  1. 1.

    The step responses of the 2nd to the 4th slits can be described bypower functions (t −k), where (t) is the time and (k) is a constant between 0 and 1 (Figs. 6, 8). This means that the sensilla take a position between a frequency independent system (displacement receptor) and a first order differentiator (velocity receptor). The standard deviations of the receptor responses coincide intra-individually and inter-individually (Fig. 5).

  2. 2.

    Thelinearity of the system was demonstrated using the second slit as an example:

  3. a)

    The slit responds proportionally to step amplitudes from 0.1° to 0.4°; (k) varies only slightly from 0.32 to 0.38 (Fig. 6).

  4. b)

    For stimulus frequencies of 0.01 Hz to 8 Hz the transfer functions calculated from the step response and those estimated from sinewave stimulation match well (Fig. 7).

  5. c)

    For stimulus frequencies of 0.01 Hz to 100 Hz the number of spikes/stimulus sinewave is nearly the same, no matter whether calculated from the step responses or measured by sinewave stimuli (Fig. 12).

  6. 3.

    Comparing the results for the 3 slit sensilla investigated (of a total of 7) the following conclusions are drawn:

  7. a)

    Thehigh-pass characteristic (exponentk) of the sensilla increases from the 2nd to the 4th slit, while the relative gain decreases (Fig. 8).

  8. b)

    Thebandwidth of the sensilla decreases according to decreasing sensitivity from slit 2 to slit 4, since the maximal stimulating frequency which can be encoded unequivocally (three spikes/stimulating sinewave) is less than 20–30 Hz for all the slits investigated (Fig. 12).

  9. c)

    Thefrequency-dependent threshold curves confirm the calculated transfer functions. For a stimulus frequency of 1 Hz the thresholds of the 2nd to the 4th slit are ca. 0.025°, 0.25° and 1.25° (deflection of the metatarsus), at 100 Hz 0.01°, 0.05° and 0.125° (extrapolated). From 0.01 Hz to 100 Hz no tuning of different slits to different “resonant frequencies” was seen (Figs. 11, 12).

  10. d)

    The characteristic curves (input amplitude vs. output-spike frequency) of the 2nd to 4th slit show an overlap of the amplitude ranges to which the sensilla respond; their linear parts, however, are linked up. This results in an extension of both the effective linear amplitude range and the range of precise detection of amplitude changes. The upper and lower limits of the linear parts of the characteristic curves depend on the stimulus frequency (Figs. 9, 10, 14, Eq. 6).

  11. 7.

    The receptor system can be described as consisting of a linear part with high-pass character plus a nonlinear rectifying part with a threshold. The linear part precedes the nonlinear one (Figs. 15, 16).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barth FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z Vergl Physiol 55:507–499

    Google Scholar 

  • Barth FG (1972a) Die Physiologie der Spaltsinnesorgane. 1. Modellversuche zur Rolle des cuticularen Spaltes beim Reiztransport. J Comp Physiol 78:315–336

    Google Scholar 

  • Barth FG (1972b) Die Physiologie der Spaltsinnesorgane II. Funktionelle Morphologie eines Mechanorezeptors. J Comp Physiol 81:159–186

    Google Scholar 

  • Barth FG (1976) Sensory information from strains in the exoskeleton. In: Hepburn H (ed) The insect integument. Elsevier, Amsterdam, pp 445–473

    Google Scholar 

  • Barth FG (1980) Campaniform sensilla: Another vibration receptor in the crab leg. Naturwissenschaften 67:201–202

    Google Scholar 

  • Barth FG (1981) ‘Strain’ detection in the arthropod exoskeleton. In: Laverack MS, Cosens D (eds) Sense organs. Blackie, Glasgow, pp 112–141

    Google Scholar 

  • Barth FG, Bohnenberger J (1978) Lyriform slit sense organs: Thresholds and stimulus intensity ranges in a multiunit mechanoreceptor. J Comp Physiol 125:37–43

    Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. Chelicerata (Araneae). Z Morphol Tiere 68:343–368

    Google Scholar 

  • Barth FG, Pickelmann P (1975) Lyriform slit sense organs in spiders: Modelling an arthropod mechanoreceptor. J Comp Physiol 103:39–54

    Google Scholar 

  • Barth FG, Seyfarth E-A (1979)Cupiennius salei Keys. (Araneae) in the highlands of central Guatemala. J Arachnol 7:255–263

    Google Scholar 

  • Bendat JS, Pearsol AG (1966) Measurement and analysis of rando data. John Wiley, New York

    Google Scholar 

  • Biederman-Thorson M, Thorson J (1971) Dynamics of excitation and inhibition in the light adaptedLimulus eye in situ. J Gen Physiol 58:1–19

    Google Scholar 

  • Bohnenberger J (1978) The transfer characteristics of a lyriform slit sense organ. Symp Zool Soc (Lond) 42:449–455

    Google Scholar 

  • Brown MC, Stein RB (1966) Quantitative studies on the slowly adapting stretch receptor of the crayfish. Kybernetik 4:175–185

    Google Scholar 

  • Chapman KM, Smith RS (1963) A linear transfer function underlying impulse frequency modulation in a cockroach mechanoreceptor. Nature 197:699–700

    Google Scholar 

  • Chapman KM, Mosinger JL, Duckrow RB (1979) The role of distributed coupling in sensory adaptation in an insect mechanoreceptor. J Comp Physiol 131:1–12

    Google Scholar 

  • Draŝlar K (1973) Functional properties of trichobothria in the bugPyrrhocoris apertus (L.). J Comp Physiol 84:175–184

    Google Scholar 

  • French AS, Wong RKS (1976) The response of trochanteral hair plate sensilla in the cockroach to periodic and random displacements. Biol Cybern 22:33–38

    Google Scholar 

  • French AS, Holden AV, Stein RB (1972) The estimation of the frequency response function of a mechanoreceptor. Kybernetik 11:15–23

    Google Scholar 

  • Gewecke M, Schlegel P (1970) Die Schwingungen der Antenne und ihre Bedeutung für die Flugsteuerung beiCalliphora erythrocephala. Z Vergl Physiol 67:325–362

    Google Scholar 

  • Heinzel H-G (1978) Aerodynamische, mechanische und elektrophysiologische Untersuchungen an der Heuschreckenantenne als Luftströmungssinnesorgan. Dissertation, Universität Düsseldorf

  • Jonsche AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Google Scholar 

  • Liesenfeld FJ (1961) Über Leistung und Sitz des Erschütterungssinnes von Netzspinnen. Biol Zentralbl 80:465–475

    Google Scholar 

  • Loewe R, Linzen B, Stackelberg W von (1970) Die gelösten Stoffe in der Haemolymphe einer Spinne,Cupiennius salei Keys. Z Vergl Physiol 66:27–34

    Google Scholar 

  • Mann DW, Chapman KM (1975) Component mechanisms of sensitivity and adaptation in an insect mechanoreceptor. Brain Res 97:331–336

    Google Scholar 

  • Marko H (1977) Methoden der Systemtheorie. Die Spektraltransformation und ihre Anwendung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Merz L (1970) Grundkurs der Regelungstechnik. Oldenbourg, München Wien

    Google Scholar 

  • Mill PJ, Harris DJ (1977) Observations of the leg receptors ofCiniflo (Araneida: Dictynidae). III. Proprioceptors. J Comp Physiol 119:63–72

    Google Scholar 

  • Rosenthal NP, McKean TA, Roberts JW, Terzuolo CA (1970) Frequency analysis of the stretch reflex and its subsystems in triceps surae muscles of the cat. J Neurophysiol 33:713–749

    Google Scholar 

  • Schlegel P (1970) Die Leistungen eines Gelenkrezeptors der Antenne vonCalliphora für die Perception von Luftströmungen. Elektrophysiologische Untersuchungen. Z Vergl Physiol 66:45–77

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane vonPeriplaneta americana: Histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48

    Google Scholar 

  • Seyfarth E-A (1978) Lyriform slit sense organs and muscle reflexes in the spider leg. J Comp Physiol 125:45–57

    Google Scholar 

  • Seyfarth E-A, Barth FG (1972) Compound slit sense organs on the spider leg: Mechanoreceptors involved in kinesthetic orientation. J Comp Physiol 78:176–191

    Google Scholar 

  • Speck J (1980) Zum Vibrationssinn der Spinnen: Funktionelle Morphologie des Klauenbereiches, Physiologie der Praetarsalspalte. Diplomarbeit, Universität Frankfurt

  • Tautz J (1978) Reception of medium vibration by thoracal hairs of caterpillars ofBarathra brassicae L. (Lepidoptera, Noctuidae). II. Response characteristics of the sensory cell. J Comp Physiol 125:67–77

    Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium —an unorthodox sensory capacity. Naturwissenschaften 66:452–461

    Google Scholar 

  • Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183:161–172

    Google Scholar 

  • Varjú D (1977) Systemtheorie für Biologen und Mediziner. Springer. Berlin Heidelberg New York

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Unwin Brothers, Woking London

  • Walcott C, Kloot WG van der (1959) The physiology of the spider vibration receptor. J Exp Zool 141:191–244

    Google Scholar 

  • Wiese K (1972) Das mechanorezeptorische Beuteortungssystem vonNotonecta I. Die Funktion des tarsalen Scolopidialorgans. J Comp Physiol 78:83–102

    Google Scholar 

  • Wyse GA (1971) Receptor organisation and function inLimulus chelae. Z Vergl Physiol 73:249–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I thank Prof. Dr. F.G. Barth for his continued support and advice during this study. Thanks are also due to Drs. E.-A. Seyfarth and J. Thorson for useful criticisms and to Mr. K. Hammer for technical assistance. Dr. J.S. Rovner kindly helped with the English manuscript. Supported by Grants from the Deutsche Forschungsgemeinschaft (Ba 304/7/9).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohnenberger, J. Matched transfer characteristics of single units in a compound slit sense organ. J. Comp. Physiol. 142, 391–402 (1981). https://doi.org/10.1007/BF00605451

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605451

Keywords

Navigation