Skip to main content
Log in

Evaluation of optical motion information by movement detectors

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The paper is dealing in its first part with a system-theoretical approach for the decomposition of multi-input systems into the sum of simpler systems. By this approach the algorithm for the computations underlying the extraction of motion information from the optical environment by biological movement detectors is analysed. In the second part it concentrates on a specific model for motion computation known to be realized by the visual system of insects and of man. These motion detectors provide the visual system with information on both, velocity and structural properties of a moving pattern. The last part of the paper deals with the functional properties of two-dimensional arrays of movement detectors. They are analyzed and their relations to meaningful physiological responses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelson EH, Berg JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299

    Google Scholar 

  • Anderson SJ, Burr DC (1985) Spatial and temporal selectivity of the human motion detection system. Vision Res 8:1147–1154

    Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit's retina. J Physiol (Lond) 178:477–504

    Google Scholar 

  • Buchner E (1974) Bewegungsperzeption in einem visuellen System mit gerastertem Eingang. Dissertation, Eberhard-Karls Universität Tübingen

  • Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 561–621

    Google Scholar 

  • Burr DC, Ross J (1982) Contrast sensitivity at high velocities. Vision Res 22:479–484

    Google Scholar 

  • Diener HC, Wist ER, Dichgans J, Brandt Th (1976) The spatial frequency effect on perceived velocity. Vision Res 16:169–176

    Google Scholar 

  • van Doorn AJ, Koenderink JJ (1976) A directionally sensitive network. Biol Cybern 21:161–170

    Google Scholar 

  • van Doorn AJ, Koenderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:179–188

    Google Scholar 

  • van Doorn AJ, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:189–195

    Google Scholar 

  • Eckert H (1973) Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik 14:1–23

    Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

    Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurons. Biol Cybern 52:195–209

    Google Scholar 

  • Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol Cybern 52:267–280

    Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 55:1–19

    Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der FliegeMusca domestica. Kybernetik 2:15–28

    Google Scholar 

  • Foster DH (1971) A model of the human visual system in its response to certain classes of moving stimuli. Kybernetik 8:69–84

    Google Scholar 

  • Geiger G, Poggio T (1975) The orientation of flies towards visual patterns: on the search for the underlying functional interactions. Biol Cybern 17:1–16

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik 2:77–92

    Google Scholar 

  • Götz KG (1972) Principles of optomotor reactions in insects. Bibliotheca Ophthal 82:251–259

    Google Scholar 

  • Götz KG (1975) The optomotor equilibrium of theDrosophila navigation system. J Comp Physiol 99:187–210

    Google Scholar 

  • Grüsser OJ, Grüsser-Cornehls U (1973) Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Jung R (ed) Handbook of sensory physiology, vol VII/3 A. Springer, Berlin Heidelberg New York, pp 333–429

    Google Scholar 

  • Hassenstein B (1958) Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern. Z Vergl Physiol 40:556–592

    Google Scholar 

  • Hassenstein B (1959) Optokinetische Wirksamkeit bewegter periodischer Muster. Z Naturforsch 14b:659–674

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des RüsselkäfersChlorophanus. Z Naturforsch 11b:513–524

    Google Scholar 

  • Hertz M (1929a) Die Organisation des optischen Feldes bei der Biene I. Z Vergl Physiol 8:693–748

    Google Scholar 

  • Hertz M (1929b) Die Organisation des optischen Feldes bei der Biene II. Z Vergl Physiol 11:107–145

    Google Scholar 

  • Kelly DH (1979) Motion and vision. II. Stabilized spatio-temporal threshold surface. J Opt Soc Am 69:1340–1349

    Google Scholar 

  • Kirschfeld K (1972) The visual system ofMusca: studies on optics, structure and function. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 61–74

    Google Scholar 

  • Kunze P (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z Vergl Physiol 44:656–684

    Google Scholar 

  • McCann GC, MacGinitie GF (1965) Optomotor response studies of insect vision. Proc R Soc London B 163:369–401

    Google Scholar 

  • Palm G, Poggio T (1977) Wiener-like system identification in physiology. Math Biology 4:375–381

    Google Scholar 

  • Pantle A (1974) Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzer. Vision Res 14:1229–1236

    Google Scholar 

  • Pick B (1974) Visual flicker induced orientation behavior in the fly. Z Naturforsch 29c:310–312

    Google Scholar 

  • Poggio T, Reichardt W (1973a) Considerations on models of movement detection. Kybernetik 13:223–227

    Google Scholar 

  • Poggio T, Reichardt W (1973b) A theory of the pattern induced flight orientation of the flyMusca domestica. Kybernetik 12:185–203

    Google Scholar 

  • Poggio T, Reichardt W (1976a) Nonlinear interactions underlying visual orientation behaviour of the fly. In: Cold Spring Harb Symp Quant Biol 40:635–645

    Google Scholar 

  • Poggio T, Reichardt W (1976b) Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Quart Rev Biophys 9:377–438

    Google Scholar 

  • Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnehmung eines Insektes). Z Naturforsch 12b:448–457

    Google Scholar 

  • Reichardt W (1961) Autocorrelation a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communications. Wiley, New York, pp 303–317

    Google Scholar 

  • Reichardt W (1969) Movement perception in insects. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic Press, London New York, pp 465–493

    Google Scholar 

  • Reichardt W (1985) Computation of sensory information by the visual system of the fly (from behaviour to neuronal circuitry). In: Haken H (ed) Complex systems — Operational approaches in neurobiology, physics, and computers. Springer, Berlin Heidelberg New York Tokyo, pp 38–57

    Google Scholar 

  • Reichardt W, Guo A (1986) Elementary pattern discrimination (behavioural experiments with the flyMusca domestica). Biol Cybern 53:285–306

    Google Scholar 

  • Reichardt W, Poggio T (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I. Experimental results. Biol Cybern 35:81

    Google Scholar 

  • Reichardt W, Poggio T (1981) Characterization of nonlinear interactions in the fly's visual system. pp 64–84. Appendix 4: A polynomial representation of algorithms. pp 197–202. In: Reichardt W, Poggio T (eds) Theoretical approaches in neurobiology. MIT Press, Cambridge MA London

    Google Scholar 

  • Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z Naturforsch 14b:674–689

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuitry. Biol Cybern [Suppl] 46:1–30

    Google Scholar 

  • Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 54:390–394

    Google Scholar 

  • van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A 1:451–473

    Google Scholar 

  • van Santen JPH, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2:300–321

    Google Scholar 

  • Thorson J (1964) Dynamics of motion perception in the desert locust. Science (NY) 145:69–71

    Google Scholar 

  • Thorson J (1966a, b) Small signal analysis of a visual reflex in the locust: I, II. Kybernetik 3:41–66

    Google Scholar 

  • Tolhurst DJ (1973) Separate channels for the analysis of the shape and the movement of a moving visual stimulus. J Physiol 231:385–402

    Google Scholar 

  • Varjú D, Reichardt W (1967) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II. Z Naturforsch 22b:1343–1351

    Google Scholar 

  • Wilson HR (1985) A model for direction selectivity in threshold motion perception. Biol Cybern 51:213–222

    Google Scholar 

  • Wright MJ, Johnston A (1985) Invariant tuning of motion aftereffect. Vision Res 25:1947–1955

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichardt, W. Evaluation of optical motion information by movement detectors. J. Comp. Physiol. 161, 533–547 (1987). https://doi.org/10.1007/BF00603660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603660

Keywords

Navigation