Skip to main content
Log in

Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

  1. 1.

    The extracellular potassium concentration in the lumbar cord of low spinal cats has been measured by means of potassium sensitive microelectrodes.

  2. 2.

    There was a transient elevation of the potassium level above its resting activity (2.5–3.0 meq/l) as a result of stimulation of peripheral nerves. The amplitude of the K+-transient increased with increasing stimulus strength, stimulation in the group II and III range being particularly effective. With increasing stimulus frequency, there was a nonlinear summation of K+-transients, the amplitude corresponding to an increase of about 1–4 mM upon a train of 20 shocks (150/s).

  3. 3.

    A roughly parallel behavior of K+-transients and focal potentials was seen, indicating that the accumulation of potassium was bound mainly to the terminal areas of the nerve under stimulation. Ventral root stimulation on the other hand usually resulted in only a small increase in the potassium level.

  4. 4.

    The excitability increase of primary afferent terminals, as evoked by conditioning volleys, and the K+-transients as evoked by the same conditioning volleys often were parallel.

  5. 5.

    In contrast to their effects on the DRP, nembutal decreased and picrotoxin increased the amplitude of K+-signals. Whereas conditioning volleys in the FRA were able to block group I evoked DRPs, they were unable to block the K+-signals evoked by the same test stimulus.

  6. 6.

    The results indicate that factors other than a K+-increase are probably also involved in the process of presynaptic inhibition. An elevation in the potassium level may, however, contribute to the excitability increase in primary afferents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmann, H., ten Bruggencate, G., Sonnhof, U.: Differential strength of action of glycine and GABA in hypoglossus nucleus. Pflügers Arch.331, 90–94 (1972)

    Google Scholar 

  • Barron, D. H., Matthews, B. H. C.: The interpretation of potential changes in the spinal cord. J. Physiol. (Lond.)92, 276–321 (1938)

    Google Scholar 

  • Brooks, C. McC., Fuortes, M. G. F.: The relation of dorsal and ventral root potentials to reflex activity in mammals. J. Physiol. (Lond.)116, 380–394 (1952)

    Google Scholar 

  • Bruggencate, G. ten, Engberg, I.: Iontophoretic studies in Deiters' nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin. Brain Res.25, 431–448 (1971)

    Google Scholar 

  • Bruggencate, G. ten, Sonnhof, U.: Effects of glycine and GABA and blocking actions of strychnine and picrotoxin in the hypoglossus nucleus. Pflügers Arch.334, 240–252 (1971)

    Google Scholar 

  • Burke, R. E.: Composite nature of the monosynaptic excitatory postsynaptic potential. J. Neurophysiol.30, 1114–1137 (1967)

    Google Scholar 

  • Cook, W. A., Jr., Cangiano, A.: Presynaptic and postsynaptic inhibition of spinal motoneurones. J. Neurophysiol.35, 389–403 (1972)

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R.: Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res.32, 69–96 (1971)

    Google Scholar 

  • Curtis, D. R., Johnston, G. A. R.: Amino acid transmitters in the mammalian central nervous system. Rev. Physiol.69, 97–188 (1974)

    Google Scholar 

  • Dun, F. T.: The latency and conduction of potentials in the spinal cord of the frog. J. Physiol. (Lond.)100, 283–298 (1941)

    Google Scholar 

  • Eccles, J. C.: The physiology of synapses. Berlin-Heidelberg-New York: Springer 1964

    Google Scholar 

  • Eccles, J. C., Eccles, R. M., Magni, F.: Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. (Lond.)159, 147–166 (1961)

    Google Scholar 

  • Eide, E., Jurna, I., Lundberg, A.: Structure and functions of inhibitory neuronal mechanisms. Proc. IVth Int. Meeting Neurobiol., Stockholm, Sept. 1966. Oxford-New York: Pergamon Press 1968

    Google Scholar 

  • Engberg, I., Thaller, A.: On the interaction of picrotoxin with GABA and glycine in the spinal cord. Brain Res.19, 151–164 (1970)

    Google Scholar 

  • Frank, K.: Basic mechanisms of synaptic transmission in the central nervous system. IRE Transact. Med. Electron. ME-6, 85–88 (1959)

  • Frank, K., Fuortes, M. G. F.: Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc.16, 39–40 (1957)

    Google Scholar 

  • Galindo, A.: GABA-picrotoxin interaction in the mammalian-central nervous system. Brain Res.14, 763–767 (1969)

    Google Scholar 

  • Gasser, H. S., Graham, H.T.: Potentials produced in the spinal cord by stimulation of the dorsal roots. Amer. J. Physiol.103, 303–320 (1933)

    Google Scholar 

  • Kellerth, J. O.: Aspects on the relative significance of pre- and postsynaptic inhibition in the spinal cord. In: Structure and function of inhibitory neuronal mechanisms C. von Euler, S. Skoglund and K. Söderberg, Eds., pp. 197–212. Oxford: Pergamon Press 1968

    Google Scholar 

  • Kellerth, J. O., Szumski, A. J.: Effects of picrotoxin on stretch-activated postsynaptic inhibitions in spinal motoneurons. Acta physiol. scand.66, 146–156 (1966)

    Google Scholar 

  • Krnjević, K., Morris, M. M.: Extracellular K+ activity and slow potential changes in spinal cord and medulla. Canad. J. Physiol. Pharmacol.50, 1214–1217 (1972)

    Google Scholar 

  • Kuffler, S. W., Nicholls, J. G.: The physiology of neuroglial cells. Ergebn. Physiol.57, 1–90 (1967)

    Google Scholar 

  • Lloyd, D. P. C., McIntyre, A. K.: On the origins of dorsal root potentials. J. gen. Physiol.32, 409–443 (1949)

    Google Scholar 

  • Lund, S., Lundberg, A., Vyklický, L.: Inhibitory action from the flexor reflex afferents on transmission to Ia afferents. Acta physiol. scand.64, 345–355 (1965)

    Google Scholar 

  • Lux, H. D.: Kaliumaktivität im Hirngewebe; Untersuchungen zum Krampfproblem. Mitt. Max-Planck-Ges.1, 34–52 (1973)

    Google Scholar 

  • Lux, H. D.: Fast recording ion specific microelectrodes: their use in pharmacological studies in the CNS. J. Neuropharmacol. (in press) (1974)

  • Lux, H. D., Eckert, R.: Net outward current “inactivation” and extracellular K+ accumulation in a bursting pacemaker neuron. Pflügers Arch.347, Suppl., R 34 (1974)

    Google Scholar 

  • Lux, H. D., Neher, E.: The equilibration time course of [K+]o in cat cortex. Exp. Brain Res.17, 190–205 (1973)

    Google Scholar 

  • Lux, H. D., Neher, E., Prince, D. A.: K+-activity determinations in cat cortex. Pflügers Arch., Suppl.332 R 89 (1972)

    Google Scholar 

  • Morris, M. M., Krnjević, K.: Some measurements of extracellular potassium activity in the mammalian central nervous system. Boston Symposium on Ion Sensitive Electrodes (in press) (1974)

  • Neher, E., Lux, H. D.: Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J. gen. Physiol.61, 385–399 (1973)

    Google Scholar 

  • Prince, D. A., Lux, H. D., Neher, E.: Measurement of extracellular potassium activity in cat cortex. Brain Res.50, 489–495 (1973)

    Google Scholar 

  • Schmidt, R. F.: The pharmacology of presynaptic inhibition. Progr. Brain Res.12, 119–134 (1964)

    Google Scholar 

  • Schmidt, R. F.: Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol.63, 20–101 (1071)

    Google Scholar 

  • Singer, W., Lux, H. D.: Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus. Brain Res.64, 1–17 (1973)

    Google Scholar 

  • Somjen, G. G.: Evoked sustained focal potentials and membrane potential of neurons and of unresponsive cells of the spinal cord. J. Neurophysiol.33, 562–582 (1970)

    Google Scholar 

  • Viskočil, F., Kříž, N., Bureš, J.: Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res.39, 255–259 (1972)

    Google Scholar 

  • Vyklický L, Syková, E., Kříž, N., Ujec, E.: Poststimulation changes of extracellular potassium concentration in the spinal cord of the rat. Brain Res.45, 608–611 (1972)

    Google Scholar 

  • Walker, I. L., Jr.: Ion specific liquid ion exchanger microelectrodes. Analyt. Chem.43, 89–92A (1971)

    Google Scholar 

  • Wall, P. D.: Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. (Lond.)142, 1–21 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Bruggencate, G., Lux, H.D. & Liebl, L. Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat. Pflugers Arch. 349, 301–317 (1974). https://doi.org/10.1007/BF00588416

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00588416

Key words

Navigation