Skip to main content
Log in

TheNAM8 gene inSaccharomyces cerevisiae encodes a protein with putative RNA binding motifs and acts as a suppressor of mitochondrial splicing deficiencies when overexpressed

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have characterized the nuclear geneNAM8 inSaccharomyces cerevisiae. It acts as a suppressor of mitochondrial splicing deficiencies when present on a multicopy plasmid. The suppressed mutations affect RNA folding and are located in both group I and group II introns. The gene is weakly transcribed in wildtype strains, its overexpression is a prerequisite for the suppressor action. Inactivation of theNAM8 gene does not affect cell viability, mitochondrial function or mitochondrial genome stability. TheNAM8 gene encodes a protein of 523 amino acids which includes two conserved (RNP) motifs common to RNA-binding proteins from widely different organisms. This homology with RNA-binding proteins, together with the intronic location of the suppressed mitochondrial mutations, suggests that the NAM8 protein could be a non-essential component of the mitochondrial splicing machinery and, when present in increased amounts, it could convert a deficient intron RNA folding pattern into a productive one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam SA, Nakagawa T, Swanson MS, Woodruff TK, Dreyfuss G (1986) mRNA polyadenylate-binding protein: Gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol 6:2932–2943

    Google Scholar 

  • Amrein H, Gorman M, Nöthiger R (1988) The sex-determining genetra-2 ofDrosophila encodes a putative RNA-binding protein. Cell 55:1025–1035

    Google Scholar 

  • Bach ML, Lacroute F, Botstein D (1979) Transcriptional regulation of orotidine 5′-phosphate decarboxylase in yeast by hybridization of mRNA to the yeast structural gene cloned inE. coli. Proc Natl Acad Sci USA 76:386–390

    Google Scholar 

  • Bandziulis RJ, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes Dev 3:431–437

    Google Scholar 

  • Banroques J, Delahodde A, Jacq C (1986) A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell 46:837–844

    Google Scholar 

  • Bell LR, Maine EM, Schedl P, Cline TW (1988)Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55:1037–1046

    Google Scholar 

  • Ben Asher E, Groudinsky O, Dujardin G, Altamura N, Kermorgant M, Slonimski PP (1989) Novel class of nuclear genes involved in both mRNA splicing and protein synthesis inSaccharomyces cerevisiae mitochondria. Mol Gen Genet 215:517–528

    Google Scholar 

  • Bennetzen JF, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li G, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single-strandedS. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615

    Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390

    Google Scholar 

  • Broach RJ, Strathern JN, Hicks JB (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of thecan1 gene. Gene 8:121–133

    Google Scholar 

  • Caizergues-Ferrer M, Mariottini P, Curie C, Lapeyre B, Gas N, Amalric F, Amaldi F (1989) Nucleolin fromXenopus laevis: cDNA cloning and expression during development. Genes Dev 3:324–333

    Google Scholar 

  • Carignani G, Groudinsky O, Frezza D, Schiavoni E, Bergantino E, Slonimski PP (1983) An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit 1 of cytochrome oxidase inS. cerevisiae. Cell 35:733–742

    Google Scholar 

  • Cech TR (1986) The generality of self-splicing RNA: Relationship to nuclear mRNA splicing. Cell 44:207–210

    Google Scholar 

  • Cobianchi F, SenGupta DN, Zmudzka BZ, Wilson SH (1986) Structure of rodent helix-destabilizing protein revealed by cDNA cloning. J Biol Chem 261:3536–3543

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Oncut BC (1978) Atlas of Protein Sequence and structure, vol 5, Suppl 3. Nat Biomed Res Found, Silver Spring, Md., pp 345–352

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Dircks LK, Poyton RO (1990) Overexpression of a leaderless form of yeast cytochrome c oxidase subunit Va circumvents the requirement for a leader peptide in mitochondrial import. Mol Cell Biol 10:4984–4986

    Google Scholar 

  • Dreyfuss G, Swanson MS, Pinol-Roma S (1988) Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem Sci 13:86–91

    Google Scholar 

  • Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Long-range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and phenomenology of suppressors. Mol Gen Genet 179:469–482

    Google Scholar 

  • Etzerodt M, Vignali R, Ciliberto G, Scherly D, Mattaj IW, Philipson L (1988) Structure and expression of aXenopus gene encoding an snRNP protein (U1 70K). EMBO J 7:4311–4321

    Google Scholar 

  • Fraser RSS (1975) Turnover of polyadenylated messenger RNA in fission yeast. Evidence for the control of protein synthesis at the translational level. Eur J Biochem 60:477–486

    Google Scholar 

  • Gargouri AF (1989) Recherches sur les introns de l'ADN mitochondrial chez la levureSaccharomyces cerevisiae: mutations, suppressions et délétions génomiques d'introns. Thése de doctorat d'état es sciences naturelles à l'Université Pierre et Marie Curie, Paris 6, France

  • Gómez J, Sánchez-Martínez D, Stiefel V, Rigau J, Puigdomènech P, Pagès M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262–264

    Google Scholar 

  • Grange T, Martins de Sa C, Oddos J, Pictet R (1987) Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif. Nucleic Acids Res 15:4771–4787

    Google Scholar 

  • Grivell LA (1989) Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. Eur J Biochem 182:477–493

    Google Scholar 

  • Groudinsky O, Dujardin G, Slonimski PP (1981) Long-range control circuits within mitochondria and between nucleus and mitochondria. II. Genetic and biochemical analyses of suppressors which selectively alleviate the mitochondrial intron mutations. Mol Gen Genet 18:493–503

    Google Scholar 

  • Groudinsky O, Altamura N, Ben Asher E, Bousquet I, Dujardin G, Ekwall K, Kermorgant M, Slonimski PP (1990) Nuclear genes interfering both with mitochondrial pre-mRNA splicing and other mitochondrial function. In: Lachowicz TM (ed) Genetics of respiratory enzymes in yeasts. Wroclaw University Press, Wroclaw, pp 246–251

    Google Scholar 

  • Habets WJ, Sillekens PTG, Hoet MH, Schalken JA, Roebroek AJM, Leunissen JAM, van de Ven WJM, Venrooij WJ (1987) Analysis of a cDNA clone expressing a human autoimmune antigen: Full-length sequence of the U2 small nuclear RNA-associated “B” antigen. Proc Natl Acad Sci USA 84:2421–2425

    Google Scholar 

  • Haynes SR, Rebbert ML, Mozer BA, Forquignon F, Dawid IB (1987) Pen repeat sequences are GGN clusters and encode a glycine-rich domain in aDrosophila cDNA homologous to the rat helix destabilizing protein. Proc Natl Acad Sci USA 84:1819–1823

    Google Scholar 

  • Hénaut A, Delorme MO (1988) Distance matrix comparison and tree construction. Pattern Recogn Lett 7:207–213

    Google Scholar 

  • Herbert CJ, Dujardin G, Labouesse M, Slonimski PP (1988) Divergence of the mitochondrial leucyl tRNA synthetase genes in two closely related yeastsSaccharomyces cerevisiae andSaccharomyces douglasii: A paradigm of incipient evolution. Mol Gen Genet 213:297–309

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167

    Google Scholar 

  • Hsu-Ching C, Stern DB (1991) Specific binding of chloroplast proteinsin vitro to the 3′ untranslated region of spinach chloroplastpetD mRNA. Mol Cell Biol 11:4380–4388

    Google Scholar 

  • Ito H, Fukuda M, Murata K, Kimma A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Jong AYS, Clark MW, Gilbert M, Oehm A, Campbell JL (1987)Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA binding proteins. Mol Cell Biol 7:2947–2955

    Google Scholar 

  • Koll H, Schmidt C, Weisenberger G, Schmelzer C (1987) Three nuclear genes suppress a mitochondrial splice defect when present in high copy number. Curr Genet 12:503–509

    Google Scholar 

  • Kotylak Z, Slonimski PP (1976) Joint control for cytochromes A and B by a unique mitochondrial DNA region comprising four genetic loci. In: Saccone C, Kroon AM (eds) The genetic function of mitochondrial DNA. Elsevier North-Holland Biochemical Press, Amsterdam, pp 143–154

    Google Scholar 

  • Labouesse M, Dujardin G, Slonimski PP (1985) The yeast nuclear gene NAM2 is essential for mitochondrial DNA integrity and can cure a mitochondrial RNA maturase deficiency. Cell 41:133–143

    Google Scholar 

  • Labouesse M, Herbert CJ, Dujardin G, Slonimski PP (1987) Three suppressor mutations which cure a mitochondrial RNA maturase deficiency occur at the same codon in the open reading frame of the nuclearNAM2 gene. EMBO J 6:713–721

    Google Scholar 

  • Lahiri DK, Thomas JO (1986) A cDNA clone of the hnRNP C proteins and its homology with the single-stranded DNA binding protein UP2. Nucleic Acids Res 14:4077–4094

    Google Scholar 

  • Lamouroux A (1979) Complementation in vivo: moyen d'étude de l'expression du gène morcelé mitochondrial codant pour l'apocytochrome b chezS. cerevisiae. Thèse de doctorat 3ème cycle de génétique, Université Paris XI, Orsay, France

    Google Scholar 

  • Langford CJ, Klinz KJ, Donath C, Gallwitz D (1984) Point mutations identify the conserved, intron-contained TACTAAC box as an essential splicing signal sequence in yeast. Cell 36:645–653

    Google Scholar 

  • Lapeyre B, Bourbon H, Amalric F (1987) Nucleolin, the major nucleolar protein of growing eukaryotic cells: an unusual protein structure revealed by the nucleotide sequence. Proc Natl Acad Sci USA 84:1472–1476

    Google Scholar 

  • Lazowska J, Jacq C, Slonimski PP (1980) Sequence of introns and flanking exons in wild type andbox3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell 22:333–348

    Google Scholar 

  • Li Y, Sugiura M (1990) Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J 9:3059–3066

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Merrill BM, Stone KL, Cobianchi F, Wilson SH, Williams KH (1988) Phenylalanines that are conserved among several RNAbinding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein. J Biol Chem 263:3307–3313

    Google Scholar 

  • Michel F, Jacquier A, Dujon B (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64:867–881

    Google Scholar 

  • Minvielle-Sebastia L, Winsor B, Bonneaud N, Lacroute F (1991) Mutations in the yeastRNA14 andRNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol Cell Biol 11:3075–3087

    Google Scholar 

  • Nasmyth KA, Reed SI (1980) Isolation of genes by complementation in yeast. Molecular cloning of a cell cycle gene. Proc Natl Acad Sci USA 77:2119–2123

    Google Scholar 

  • Partaledis JA, Mason TL (1988) Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP1 3, a protein of the small subunit of the mitochondrial ribosome. Mol Cell Biol 8:3647–3660

    Google Scholar 

  • Query CC, Bentley RC, Keene JD (1989) A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57:89–101

    Google Scholar 

  • Robinow S, Campos AR, Yao KM, White K (1988) Theelav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science 242:1570–1572

    Google Scholar 

  • Sachs AB, Bond MW, Kornberg RD (1986) A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: Domain structure and expression. Cell 45:827–835

    Google Scholar 

  • Scherly D, Boelens W, van Veenroij WJ, Dathan NA, Hamm J, Mattaj IW (1989) Identification of the RNA binding segment of human U1 A protein and definition of its binding site on U1 snRNA. EMBO J 8:4163–4170

    Google Scholar 

  • Shannon KW, Guthrie C (1991) Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs. Genes Dev 5:773–785

    Google Scholar 

  • Sherman F, Slonimski PP (1964) Respiration-deficient mutants of yeast. II Biochemistry. Biochim Biophys Acta 90:1–15

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sillekens PTG, Habets RP, Beijeir RP, van Venrooij WJ (1987) cDNA cloning of the human U1 snRNA-associated A protein: Extensive homology between U1 and U2 snRNP-specific proteins. EMBO J 6:3841–3848

    Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Google Scholar 

  • Srivastava M, Fleming PJ, Pollard HB, Lee Burns A (1989) Cloning and sequencing of the human nucleolin cDNA. FEBS Lett 250:99–105

    Google Scholar 

  • Theissen H, Etzerodt M, Reuter R, Schneider C, Lottspeich F, Argos P, Lührmann R, Philipson L (1986) Cloning of the human cDNA for the U1 RNA-associated 70K protein. EMBO J 5:3209–3217

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) PET genes ofSaccharomyces cerevisiae. Microbiol Rev 54:211–225

    Google Scholar 

  • Wahlgren M, Åslund L, Franzén L, Sundvall M, Wåhlin B, Berzins K, McNicol LA, Björkman A, Wigzell H, Perlman P, Pettersson U (1986) APlasmodium falciparum antigen containing clusters of asparagine residues. Proc Natl Acad Sci USA 83:2677–2681

    Google Scholar 

  • Wiesenberger G, Link TA, von Ahsen U, Waldherr M, Schweyen RJ (1991) MRS3 and MRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family. J Mol Biol 217:23–27

    Google Scholar 

  • Zaret KS, Sherman F (1982) DNA sequence requied for efficient transcription termination in yeast. Cell 28:563–573

    Google Scholar 

  • Zelus BD, Giebelhaus DH, Eib DW, Kenner KA, Moon RT (1989) Expression of the poly(A)-binding protein during development ofXenopus laevis. Mol Cell Biol 9:2756–2760

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekwall, K., Kermorgant, M., Dujardin, G. et al. TheNAM8 gene inSaccharomyces cerevisiae encodes a protein with putative RNA binding motifs and acts as a suppressor of mitochondrial splicing deficiencies when overexpressed. Molec. Gen. Genet. 233, 136–144 (1992). https://doi.org/10.1007/BF00587571

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587571

Key words

Navigation