Skip to main content
Log in

The coupling of poweroutput and myofibrillar ATPase activity in glycerol-extracted insect fibrillar muscle at varying amplitude of ATP-driven oscillation

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Glycerol extracted fibre bundles or single fibres from the dorsolongitudinal muscle of Lethocerus maximus were suspended in ATP-saltsolution; they were then held isometrically or they were sinusoidally stretched and released about a mean length (102%L 0) at an oscillation amplitude of 1–4% of the length. At very low frequencies (less than 0,2 cycles/sec) the ATPase activity remained the same as under static conditions at the mean length since the activity increase produced by stretch was compensated by the activity reduction during release. At frequencies approaching 2–3 cycles/sec the ATPase activity greatly exceeded the activity level under static conditions (at the mean fibre length and even at the extended length) by an amount (Extra-ATPase activity) depending on the oscillation amplitude. At this frequency sinusoidal tension changes lagged behind sinusoidal length changes, indicating that the fibre preparation was producing oscillatory power (about 0.3 μ cal/min cm fibre). The power output was often proportional to the square of the oscillation amplitude and mostly proportional to the oscillation induced extra-ATPase activity, suggesting a close mechanochemical coupling in the sense of a biochemical ‘Fenn effect’. At an oscillation amplitude the of 3–4%L 0 maximal rates of extra ATP-splitting were observed, which amounted to 1–3 molecules of ATP split per crossbridge during each oscillation cycle. The mechanochemical coefficient approached 2–3 kcal/mole ATP split, indicating and ‘efficiency’ of up to 30%. We suggest that power producing oscillation increases the rate of actin-myosin interactions and we conclude that — like living muscle — the isolated contractile machinery transforms chemical energy (from ATP) into mechanical work with a high efficiency, and that the amount of work done controls the extent of the chemical reaction which takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbot, R. H., andH. G. Mannherz: In preparation.

  2. Barany, M., andF. Jaisle: Biochim. biophys. Acta (Amst)41, 192 (1960).

    Google Scholar 

  3. Cain, D. F., A. A. Infante, andR. E. Davies: Nature (Lond.)196, 214 (1962).

    Google Scholar 

  4. Carlson, F. D., D. J. Hardy, andD. R. Wilkie: J. gen. Physiol.46, 851 (1963).

    Google Scholar 

  5. Chaplain, R. A., andR. T. Tregear: J. molec. Biol.21, 275 (1966).

    Google Scholar 

  6. Davies, R. E.: Nature (Lond.)199, 1068 (1963).

    Google Scholar 

  7. Fenn, W. O.: J. Physiol. (Lond.)58, 175 (1923).

    Google Scholar 

  8. Huxley, A. F.: Progr. Biophys. molec. Biol.7, 255 (1957).

    Google Scholar 

  9. Huxley, H. E., andJ. Hanson: In: The structure and function of muscle, vol. 1, p. 183, Ed.G. H. Bourne. New York: Academic Press 1960.

    Google Scholar 

  10. Jewell, B. R., andJ. C. Rüegg: Proc. roy. Soc. B164, 428 (1966).

    Google Scholar 

  11. Machin, K. E., andJ. W. S. Pringle: Proc. roy. Soc. B152, 311 (1960).

    Google Scholar 

  12. Mannherz, H. G.: Pflügers Arch.303, 230 (1968).

    Google Scholar 

  13. Maréchal, G.: Le métabolisme de la phosphorylcréatine et de l'adénosine triphosphate durant la contraction musculaire. Bruxelles: Arcia 1964.

    Google Scholar 

  14. Marsh, B. B.: Biochim. biophys. Acta (Amst.)32, 357 (1959).

    Google Scholar 

  15. Maruyama, K., andJ. W. S. Pringle: Arch. Biochem.120, 225 (1967).

    Google Scholar 

  16. Mommaerts, W. F. H. M., K. Seraydarian, andG. Maréchal: Biochim. biophys. Acta (Amst.)57, 1 (1962).

    Google Scholar 

  17. Podolsky, R. J.: In: The structure and function of muscle, vol 2, p. 359. Ed.G. H. Bourne: New York: Academic Press 1960.

    Google Scholar 

  18. Pringle, J. W. S.: Progr. Biophys. molec. Biol.17, 1 (1967).

    Google Scholar 

  19. Reedy, M. K.: Amer. Zool.7, 465 (1967).

    Google Scholar 

  20. ——, andR. T. Tregear: Nature (Lond.)207, 1276 (1965

    Google Scholar 

  21. Rüegg, J. C.: Amer. Zool.7, 465 (1967).

    Google Scholar 

  22. ——, andH. Stumpf: Pflügers Arch.305, 34 (1969).

    Google Scholar 

  23. ——, andR. T. Tregear: Proc. roy. Soc. B165, 497 (1966).

    Google Scholar 

  24. Schädler, M.: Pflügers Arch. ges. Physiol.296, 70 (1967).

    Google Scholar 

  25. Steiger, G., andJ. C. Rüegg: Pflügers Arch. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüegg, J.C., Stumpf, H. The coupling of poweroutput and myofibrillar ATPase activity in glycerol-extracted insect fibrillar muscle at varying amplitude of ATP-driven oscillation. Pflugers Arch. 305, 21–33 (1968). https://doi.org/10.1007/BF00586393

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586393

Key-Words

Schlüsselwörter

Navigation