Skip to main content
Log in

Funktion und Energiestoffwechsel des isolierten Herzens bei Variation von pH,\(P_{{\text{CO}}_{\text{2}} } \) und HCO 3

II. Metabolite des myokardialen Energiestoffwechsels

Function and energy metabolism of the isolated heart as influenced by variation of pH,\(P_{{\text{CO}}_{\text{2}} } \) and HCO3

II. Concentrations of phosphate metabolites

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Effects of variation of pH (7.0–7.9) on myocardial concentrations of high energy phosphate, creatine and inorganic phosphate were investigated in isolated guina pig hearts over a period of 2 h. Remarkable changes were observed in the myocardial concentration of inorganic phosphate and in the mass action ratio of the creatine kinase. The myocardial concentration of inorganic phosphate is generally elevated up to 140% at higher, and reduced at lower pH-values. The mass action ratio of the creatine kinase increases up to 200% at pH 7.9 with a time lag of 1 h and decreases at pH 7.0. The changes in the mass action ratio are much smaller than those, which can be calculated from the creatine kinase equilibrium, especially with respect to participation of H+-ions. Intracellular compartmentalisation of metabolites and flow equilibrium involving two isoenzymes of creatine kinase at different cellular sites are discussed as possible explanations of the discrepancies between the observed and calculated mass action ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Baskin, R. J., Deamer, D. W.: A membrane-bound creatine phosphokinase in fragmented sarkoplasmic reticulum. J. biol. Chem.245, 1345–1347 (1970).

    Google Scholar 

  2. Benson, E. S., Freier, E. F., Vijums, R.: Carbon dioxide dissociation curve and buffer capacity of dog heart muscle. Amer. J. Physiol.209, 941–944 (1965).

    Google Scholar 

  3. Bernt, E., Bergmeyer, H. U., Möllering, H.: Kreatin. S. 407–410. In: Methoden der enzymatischen Analyse. Hrsg: H. U. Bergmeyer. Weinheim: Verlag Chemie 1962.

    Google Scholar 

  4. Brown, E. B., Goot, B.: Intracellular hydrogen ion changes and potassium movement. Amer. J. Physiol.204, 765–770 (1963).

    Google Scholar 

  5. Carter, N. W., Rector, R. C., Campion, D. S., Seldin, D. W.: Measurement of intracellular pH of skeletal muscle with pH-sensitive glass microelectrodes. J. clin. Invest.46, 920–933 (1967).

    Google Scholar 

  6. Clancy, R. L., Brown, E. B.: In vivo CO2 buffer curves of skeletal and cardiac muscle. Amer. J. Physiol.211, 1309–1612 (1966).

    Google Scholar 

  7. Fleckenstein, A., Janke, J., Gerlach, E.: Konzentration und Turnover der energiereichen Phosphate des Herzens nach Studien mit Papierchromatographie und Radiophosphor. Klin. Wschr.37, 451–459 (1959).

    Google Scholar 

  8. Gercken, G.: Die quantitative enzymatische Dehydrierung von L(+)-Lactat für die Mikroanalyse. Hoppe-Seylers Z. physiol. Chem.320, 180 (1960).

    Google Scholar 

  9. Gerlach, E., Bader, W., Schwörer, W.: Über den Stoffwechsel säurelöslicher Phosphor-Verbindungen in der Rattenniere. Pflügers Arch. ges. Physiol.272, 407–433 (1961).

    Google Scholar 

  10. —, Deuticke, B.: Einfache Methode zur Mikrobestimmung von Phsophat in der Papierchromatographie. Biochem. Z.357, 477–479 (1963).

    Google Scholar 

  11. —, Janke, J.: Papierchromatographische Bestimmung von Kreatinphosphat und Orthophosphat in Gewebsextrakten. Biochem. Z.330, 565–575 (1958).

    Google Scholar 

  12. Gray, B. A.: The rate of aproach to equilibrium in the uncatalyzed CO2 hydration reactions: The theoretical effect of buffering capacity. Resp. Physiol.11, 223–234 (1971).

    Google Scholar 

  13. Heldt, H. W., Klingenberg, M.: Differences between the reactivity of endogenous and exogenous adenine nucleotides in mitochondria as studied at low temperature. Europ. J. Biochem.4, 1–8 (1968).

    Google Scholar 

  14. Hill, A. V.: Influence of the external medium on the internal pH of muscle. Proc. roy. Soc. B144, 1–21 (1955).

    Google Scholar 

  15. Hochrein, H., Döring, H. J.: Die energiereichen Phosphate des Myokards bei Variation der Belastungsbedingungen. Pflügers Arch. ges. Physiol.271, 548 bis 563 (1960).

    Google Scholar 

  16. Janke, J.: Die Aufteilung des intrazellulären ADP, ATP und Orthophosphats in der ruhenden und tetanisch gereizten Froschmuskulatur mittels einer fraktionierten Extraktion. Pflügers Arch. ges. Physiol.300, 1–22 (1968).

    Google Scholar 

  17. Jakobs, H., Heldt, H. W., Klingenberg, M.: High activity of creatine-kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine-kinase. Biochem. biophys. Res. Commun.16, 516–521 (1964).

    Google Scholar 

  18. Kammermeier, H.: Bestimmung von Kreatin in Gewebsextrakten durch Kombination von papierchromatographischen und fluorometrischen Methoden. (Bisher unveröffentlicht.)

  19. Krautzberger, W., Kammermeier, H., Kammermeier, B.: Energiereiche Phosphatverbindungen im Myokard unter dem Einfluß von Adrenalin, Noradrenalin und Isoproterenol. Pflügers Arch.312, 6 (1969).

    Google Scholar 

  20. Kübler, W., Hähn, N., Hellberg, K., Orellano, L. E., Reidemeister, C. J., Spieckermann, P. G.: Beziehungen zwischen aerobem und an aerobem Energieumsatz des Herzens unter verschiedenen funktionellen Bedingungen. Verh. dtsch. Ges. Kreisl.-Forsch. 31. Tgg., 86–92 (1965).

  21. Nägle, S., Hockerts, Th., Bögelmann, G.: Die Beeinflussung des Kreatinphosphokinase-Gleichgewichts durch pH-Abfall im Herzmuskel unter ischämischen Bedingungen. Klin. Wschr.42, 780–784 (1964).

    Google Scholar 

  22. Nihei, T., Noda, L., Morales, M. F.: Kinetic properties and equilibrium constant of the adenosine triphosphate-creatine transphosphorylase-catalyzed reaction. J. biol. Chem.236, 3203–3209 (1961).

    Google Scholar 

  23. Opie, L.: Effect of extracellular pH on function and metabolism of isolated perfused rat heart. Amer. J. Physiol.209, 1075–1080 (1965).

    Google Scholar 

  24. Ottaway, I. H.: Evidence for binding of cytoplasmatic creatine-kinase to structural elements in heart muscle. Nature (Lond.)215, 521–522 (1967).

    Google Scholar 

  25. Perry, S. V.: The bound nucleotide of the isolated myofibril. Biochem. J.51, 495–499 (1952).

    Google Scholar 

  26. Roos, A.: Intracellular pH and buffering powers of rat muscle. Amer. J. Physiol.221, 182–188 (1971).

    Google Scholar 

  27. Sacks, J., Duckett, W. D., Morgan, S., Schaefer, M.: Free and bound nucleotides in frog and mammalian muscle. Arch. Biochem.122, 591–593 (1967).

    Google Scholar 

  28. Serayderian, K., Mommaerts, W. F. H. M., Wallner, A.: The amount and compartmentalisation of adenosine diphosphate in muscle. Biochim. biophys. Acta (Amst.)65, 443–460 (1962).

    Google Scholar 

  29. Wadell, W. J., Bates, R. A.: Intracellular pH. Physiol. Rev.49, 285–329 (1969).

    Google Scholar 

  30. Yagi, K., Mase, R.: Possible compartimentation of adenine nucleotides in a coupled reaction system composed of F-actomysin-adensione-triphosphatase and creatinkinase, pp. 109–122. In: Molecular biology of muscular contraction. Ebashi, Oosawa, Sekine, and Tonomura, eds. Amsterdam-London-New York: Elsevier 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Eine vorläufige Mitteilung über Teile der Befunde erfolgte auf der 36. Tagung der Deutschen Physiologischen Gesellschaft, Mainz, Sept. 1969. Pflügers Arch.312, 10 (1969).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammermeier, H., Rudroff, W. Funktion und Energiestoffwechsel des isolierten Herzens bei Variation von pH,\(P_{{\text{CO}}_{\text{2}} } \) und HCO 3 . Pflugers Arch. 334, 50–61 (1972). https://doi.org/10.1007/BF00586000

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586000

Key words

Navigation