Skip to main content
Log in

Effect of phenoxybenzamine and propranolol on myocardial reactive hyperaemia in fibrillating canine heart

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

In order to evaluate whether alpha and beta adrenergic mechanisms participate in the coronary reactive hyperaemia, effects of phenoxybenzamine (10 mg per kg b.w.) or propranolol (2 mg per kg b.w.), or phenoxybenzamine + propranolol on reactive hyperaemic responses following 15, 30, 60 and 120 s occlusions of left coronary vessels were investigated on isolated fibrillating, blood-perfused dog heart preparations. Hearts were either perfused at constant pressure or at constant volume on the basal perfusion pressure of 150 mm Hg.

Phenoxybenzamine induced marked vasodilatation while the postocclusion reaction slightly increased when hearts were perfused at constant pressure. Upon application of propranolol both basal conductance and postocclusion reaction was considerably decreased. After phenoxybenzamine pretreatment propranolol did not change the maximum postocclusion coronary dilatation, but the duration of reactive hyperaemia however, was decreased.

It can be concluded that alpha and beta adrenergic receptors are involved in the regulation of coronary circulation of fibrillating canine heart either in the control state or during postocclusion period. Alpha receptors seem to determine the degree of coronary dilatation after the release of occlusion, while beta receptors may control primarily the duration of reactive hyperaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlquist, R. P.: Adrenergic receptors: A personal and practical view. Perspect. Biol. Med.17, 119–122 (1973)

    Google Scholar 

  • Ahlquist, R. P.: Present state of alpha-adrenergic and beta-adrenergic drugs. 1. Adrenergic receptor. Am. Heart J.92, 661–672 (1976)

    Google Scholar 

  • Anrep, G. V., Häusler, H.: The coronary circulation. II. The effect of changes of temperature and of heart rate. J. Physiol. (Lond.)67, 299–314 (1929)

    Google Scholar 

  • Armitage, P.: Statistical methods in medical research. Oxford-Edinbourgh: Blackwell 1971

    Google Scholar 

  • Bittar, N., Pauly, T. J.: Abolition of reactive hyperaemia in the dog heart following receptor blockade and its reversal by vasopressin. Arch. Int. Pharmacodyn. Ther.213, 235–241 (1975)

    Google Scholar 

  • Eckstein, R. W., McEachen, J. A., Demming, J., Newberry, W. B., Jr.: A special cannula for determination of blood flow in the left common coronary artery of the dog. Science113, 385–386 (1951)

    Google Scholar 

  • Eikens, E., Wilcken, D. E. L.: Myocardial reactive hyperemia and coronary vascular reactivity in the dog. Circ. Res.33, 267–274 (1973)

    Google Scholar 

  • Ek, L., Åblad, B.: Effects of three beta adrenergic receptor blockers on myocardial oxygen consumption in the dog. Eur. J. Pharmacol.14, 19–28 (1971)

    Google Scholar 

  • Farsang, Cs., Debreczeni, L., Kerényi, Á., Karai, A., Takács, L.: Myocardial reactive hyperaemia. Comparison of constant pressure and constant volume perfusion. Kisérl. Orvostud.29, 152–160 (1977) (in Hung.)

    Google Scholar 

  • Folkow, B.: Description of the myogenic hypothesis. Circ. Res.14–15 (Suppl. I), 279–287 (1964)

    Google Scholar 

  • Giles, R. W., Wilcken, D. E. L.: Reactive hyperaemia in the dog heart: evidence for a myogenic contribution. Cardiovasc. Res.11, 64–73 (1977)

    Google Scholar 

  • Gregg, D. E., Khouri, E. M., Donald, D. E., Lowensohn, H. S., Pasyk, S.: Coronary circulation in the conscious dog with cardiac neural ablation. Circ. Res.31, 129–143 (1972)

    Google Scholar 

  • Gross, G. J., Feigl, E. O.: Analysis of coronary vascular beta receptors in situ. Am. J. Physiol.228, 1909–1913 (1975)

    Google Scholar 

  • Hashimoto, K., Shigei, T., Imai, S., Saito, Y., Yago, N., Uei, I., Clark, P. R.: Oxygen consumption and coronary vascular tone in the isolated fibrillating dog heart. Am. J. Physiol.198, 965–970 (1960)

    Google Scholar 

  • Johansson, B.: Mechanics of vascular smooth muscle contraction. Experientia31, 1377–1386 (1975)

    Google Scholar 

  • Johnson, P. C., Burton, K. S., Heinrich, H., Heinrich, U.: Effect of occlusion duration on reactive hyperemia in sartorius muscle capillaries. Am. J. Physiol.230, 715–719 (1976)

    Google Scholar 

  • Juhász-Nagy, A., Urbanics, R.: Influence of α- and β sympathetic blockade on hypoxic sensitivity of the coronaries. Jap. Heart J.17, 458–490 (1976)

    Google Scholar 

  • Kunos, Gy., Szentiványi, M.: Evidence favouring the existence of a single adrenergic receptor. Nature217, 1077–1078 (1968)

    Google Scholar 

  • Lioy, F.: An analysis of the mechanism of catecholamine effects on coronary circulation. Am. J. Physiol.213, 487–491 (1967)

    Google Scholar 

  • McKenna, D. H., Corliss, R. J., Sialer, S., Zarnstoff, W. C., Crumpton, C. W., Roewe, G. G.: Effect of propranolol on systemic and coronary hemodynamics at rest and during simulated exercise. Circ. Res.19, 520–527 (1966)

    Google Scholar 

  • Nickerson, M.: Adrenergic receptors. Circ. Res.32–33 (Suppl. I) 53–60 (1973)

    Google Scholar 

  • Pauly, T. J., Bittar, N.: Myocardial reactive hyperemia responses in the dog after beta receptor block with propranolol. Cardiovasc. Res.5, 440–443 (1971)

    Google Scholar 

  • Pauly, T. J., Zarnstoff, W. C., Bittar, N.: Myocardial metabolic activity as a determinant of reactive hyperemia responses in the dog heart. Cardiovasc. Res.7, 90–94 (1973)

    Google Scholar 

  • Reis, R. L., Cohn, L. H., Morrow, A. G.: Effects of induced ventricular fibrillation on ventricular performance and cardiac metabolism. Circulation36 (Suppl. I), 234–243 (1967)

    Google Scholar 

  • Schwartz, P. J., Stone, H. L.: Tonic influence of sympathetic nervous system on myocardial reactive hyperemia and on coronary blood flow distribution in dogs. Circ. Res.41, 51–58 (1977)

    Google Scholar 

  • Snedecor, G. W., Cochran, W. G.: Statistical methods. 6th ed. Ames: Iowa State Univ. Press 1967

    Google Scholar 

  • Szentiványi, M., Juhász-Nagy, A.: The physiological role of coronary constrictor fibres. II. The role of coronary vasomotors in metabolic adaptation of the coronaries. Q. J. Exp. Physiol.48, 105–118 (1963)

    Google Scholar 

  • Szentiványi, M., Juhász-Nagy, S., Kunos, Gy.: Pathophysiological aspects of neural regulation of coronaries. Orv. Hetil.111, 2229–2232 (1970a) (in Hung.)

    Google Scholar 

  • Szentiványi, M., Kunos, Gy., Juhász-Nagy, S.: Modulator theory of adrenergic receptor mechanism: vessels of the dog hindlimb. Am. J. Physiol.218, 869–875 (1970b)

    Google Scholar 

  • Yazaki, Y., Kuramoto, K., Fujii, J., Murata, K., Ikeda, M., Nakao, K.: The effects of sympathetic nerves and catecholamines on the myocardial reactive hyperaemia. Jap. Circulation J.34, 405–411 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farsang, C., Debreczeni, L., Kerényi, Á. et al. Effect of phenoxybenzamine and propranolol on myocardial reactive hyperaemia in fibrillating canine heart. Pflugers Arch. 379, 223–228 (1979). https://doi.org/10.1007/BF00581425

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581425

Key words

Navigation